Skip to main content
Log in

Impact of Parkinson’s disease on proprioceptively based on-line movement control

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Evidence suggests that Parkinson’s disease (PD) patients produce large spatial errors when reaching to proprioceptively defined targets. Here, we examined whether these movement inaccuracies result mainly from impaired use of proprioceptive inputs for movement planning mechanisms or from on-line movement guidance. Medicated and non-medicated PD patients and healthy controls performed three-dimensional reaching movements in four sensorimotor conditions that increase proprioceptive processing requirements. We assessed the influence of these sensorimotor conditions on the final accuracy and initial kinematics of the movements. If the patterns of final errors are primarily determined by planning processes before the initiation of the movement, the initial kinematics of reaching movements should show similar trends and predict the pattern of final errors. Medicated and non-medicated PD patients showed a greater mean level of final 3D errors than healthy controls when proprioception was the sole source of information guiding the movement, but this difference reached significance only for medicated PD patients. However, the pattern of initial kinematics and final spatial errors were markedly different both between sensorimotor conditions and between groups. Furthermore, medicated and non-medicated PD patients were less efficient than healthy controls in compensating for their initial spatial errors (hand distance from target location at peak velocity) when aiming at proprioceptively defined compared to visually defined targets. Considered together, the results are consistent with a selective deficit in proprioceptively based movement guidance in PD. Furthermore, dopaminergic medication did not improve proprioceptively guided movements in PD patients, indicating that dopaminergic dysfunction within the basal ganglia is not solely responsible for these deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The same set of data as in Mongeon et al. (2009) was re-analysed in the present study to compare initial and final kinematics of the reaching movements across the different sensory conditions. Eleven PD patients and ten healthy controls participated in our previous study (Mongeon et al. 2009). One PD patient and one healthy subject were excluded from the present study because a number of missing diodes prevented a precise determination of the position at which 150 ms after movement onset and peak velocity occurred.

References

  • Akkal D, Dum RP, Strick PL (2007) Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output. J Neurosci 27:10659–10673

    Article  CAS  PubMed  Google Scholar 

  • Bloxham CA, Mindel TA, Frith CD (1984) Initiation and execution of predictable and unpredictable movements in Parkinson’s disease. Brain 107(Pt 2):371–384

    Article  PubMed  Google Scholar 

  • Chapman CD, Heath MD, Westwood DA, Roy EA (2001) Memory for kinaesthetically defined target location: evidence for manual asymmetries. Brain and cogn 46(1–2):62–66

    Article  CAS  Google Scholar 

  • Cisek P, Kalaska JF (2010) Neural mechanisms for interacting with a world full of action choices. Annu Rev Neurosci 33:269–298

    Article  CAS  PubMed  Google Scholar 

  • Clower DM, Dum RP, Strick PL (2005) Basal ganglia and cerebellar inputs to ‘AIP’. Cereb Cortex 15:913–920

    Article  PubMed  Google Scholar 

  • Contreras-Vidal JL (1999) The gating functions of the basal ganglia in movement control. Prog Brain Res 121:261–276

    Article  CAS  PubMed  Google Scholar 

  • Contreras-Vidal JL, Gold DR (2004) Dynamic estimation of hand position is abnormal in Parkinson’s disease. Parkinsonism Relat Disord 10:501–506

    Article  PubMed  Google Scholar 

  • Day BL, Dick JP, Marsden CD (1984) Patients with Parkinson’s disease can employ a predictive motor strategy. J Neurol Neurosurg Psychiatr 47:1299–1306

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Demirci M, Grill S, McShane L (1997) A mismatch between kinesthetic and visual perception in Parkinson’s disease. Ann Neurol 41:781–788

    Article  CAS  PubMed  Google Scholar 

  • Desmurget M, Grafton S (2000) Forward modelling allows feedback control for fast reaching movements. Trends Neurosci 4(11):423–431

    Article  Google Scholar 

  • Desmurget M, Epstein CM, Turner RS, Prablanc C, Alexander GE, Grafton ST (1999) Role of the posterior parietal cortex in updating reahing movements to a visual target. Nat Neurosci 2(6):563–567

    Article  CAS  PubMed  Google Scholar 

  • Desmurget M, Gréa H, Grethe JS, Prablanc C, Alexander GE, Grafton ST (2001) Functional Anatomy of Nonvisual Feedback Loops during Reaching: A Positron Emission Tomography Study. J Neurosci 21(8):2919–2928

    CAS  PubMed  Google Scholar 

  • Desmurget M, Gaveau V, Vindras P, Turner RS, Broussolle E, Thobois S (2004) On-line motor control in patients with Parkinson’s disease. Brain 127:1755–1773

    Article  CAS  PubMed  Google Scholar 

  • Diedrichsen J, Hashambhoy Y, Rane T, Shadmehr R (2005) Neural correlates of reach errors. J Neurosci 25(43):9919–9931

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eckert T, Peschel T, Heinze HJ, Rotte M (2006) Increases pre-SMA activation in early PD patients during simple self-initiated hand movements. J Neurol 253(2):199–207

    Article  CAS  PubMed  Google Scholar 

  • Elliott D, Hansen S, Grierson LEM, Lyons J, Bennett SJ, Hayes SJ (2010) Goal-directed aiming: two components but multiple processes. Psychol Bull 136:1023–1044

    Article  PubMed  Google Scholar 

  • Fahn S, Elton RL (1987) Unified Parkinson's Disease Rating Scale. In: Fahn S, Marsden C, Calne D, Goldstein M (eds) Recent devlopments in Parkinson's disease. Macmillan, NewYork, pp 293–304

    Google Scholar 

  • Fiehler K, Burke M, Bien S, Röder B, Rösler F (2009) The human dorsal action control system develops in the absence of vision. Cereb Cortex 19:1–12

    Article  PubMed  Google Scholar 

  • Fiorio M, Stanzani C, Rothwell JC, Bhatia KP, Moretto G, Fiaschi A, Tinazzi M (2007) Defective temporal discrimination of passive movements in Parkinson’s disease. Neurosci Lett 417:312–315

    Article  CAS  PubMed  Google Scholar 

  • Flash T, Inzelberg R, Schechtman E, Korczyn AD (1992) Kinematic analysis of upper limb trajectories in Parkinson’s disease. Exp Neurol 118:215–226

    Article  CAS  PubMed  Google Scholar 

  • Flowers KA (1976) Visual “closed-loop” and “open-loop” characteristics of voluntary movement in patients with Parkinsonism and intention tremor. Brain 99:269–310

    Article  CAS  PubMed  Google Scholar 

  • Ghilardi MF, Alberoni M, Rossi M, Franceschi M, Mariani C, Fazio F (2000) Visual feedback has differential effects on reaching movements in Parkinson’s and Alzheimer’s disease. Brain Res 876:112–123

    Article  CAS  PubMed  Google Scholar 

  • Glover S (2004) Separate visual representations in the planning and control of action. Behav Brain Sci 27(1):3–24

    PubMed  Google Scholar 

  • Gordon J, Ghilardi MF, Ghez C (1994) Accuracy of planar reaching movements. I. Independence of direction and extent variability. Exp Brain Res 99(1):97–111

    Article  CAS  PubMed  Google Scholar 

  • Gosselin-Kessiby N, Messier J, Kalaska JF (2008) Evidence for automatic on-line adjustments of hand orientation during natural reaching movements to stationary targets. J Neurophysiol 99:1653–1671

    Article  CAS  PubMed  Google Scholar 

  • Gosselin-Kessiby N, Kalaska JF, Messier J (2009) Evidence for a proprioception-based rapid on-line error correction mechanism for hand orientation during reaching movements in blind subjects. J Neurosci 29:3485–3496

    Article  CAS  PubMed  Google Scholar 

  • Grafton ST, Tunik E (2011) Human basal ganglia and the dynamic control of force during on-line corrections. J Neurosci 31(5):1600–1605

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Graziano MS, Gross CG (1993) A bimodal map of space: somatosensory receptive fields in the macaque putamen with corresponding visual receptive fields. Exp Brain Res 97:96–109

    Article  CAS  PubMed  Google Scholar 

  • Haslinger B, Erhard P, Kämpfe N, Boecker H, Rummeny E, Schwaiger M, Conrad B, Ceballos-Baumann AO (2001) Event-related functional magnetic resonance imaging in Parkinson’s disease before and after levodopa. Brain 124:558–570

    Article  CAS  PubMed  Google Scholar 

  • Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17:427–442

    Article  CAS  PubMed  Google Scholar 

  • Houk JC, Wise SP (1995) Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and controlling action. Cereb Cortex 5:95–110

    Article  CAS  PubMed  Google Scholar 

  • Jacobs JV, Horak FB (2006) Abnormal proprioceptive-motor integration contributes to hypometric postural responses of subjects with Parkinson's disease. Neuroscience 141:999–1009

    Article  CAS  PubMed  Google Scholar 

  • Khan MA, Franks IM, Goodman D (1998) The effect of practice on the control of rapid aiming movements: evidence for an interdependency between programming and feedback processing. Q J Exp Psychol A 51(2):425–444

    Article  Google Scholar 

  • Khan MA, Franks IM, Elliott D, Lawrence GP, Chua R, Bernier P-M, Hansen S, Weeks DJ (2006) Inferring online and offline processing of visual feedback in target-directed movements from kinematic data. Neurosci Biobehav Rev 30:1106–1121

    Article  PubMed  Google Scholar 

  • Klockgether T, Borutta M, Rapp H, Spieker S, Dichgans J (1995) A defect of kinesthesia in Parkinson’s disease. Mov Disord 10:460–465

    Article  CAS  PubMed  Google Scholar 

  • Konczak J, Krawczewski K, Tuite P, Maschke M (2007) The perception of passive motion in Parkinson’s disease. J Neurol 254:655–663

    Article  PubMed  Google Scholar 

  • Leek EC, Kerai JH, Johnston SJ, Hindle JV, Bracewell RM (2014) Impaired visuospatial transformation but intact sequence processing in Parkinson disease. Cogn Behav Neurol 27(3):130–138

    Article  PubMed  Google Scholar 

  • Liu X, Tubbesing SA, Aziz TZ, Miall RC, Stein JF (1999) Effects of visual feedback on manual tracking and action tremor in Parkinson’s disease. Exp Brain Res 129:477–481

    Article  CAS  PubMed  Google Scholar 

  • Maschke M, Gomez CM, Tuite PJ, Konczak J (2003) Dysfunction of the basal ganglia, but not the cerebellum, impairs kinaesthesia. Brain 126:2312–2322

    Article  PubMed  Google Scholar 

  • Messier J, Kalaska JF (1999) Comparison of variability of initial kinematics and endpoints of reaching movements. Exp Brain Res 125:139–152

    Article  CAS  PubMed  Google Scholar 

  • Messier J, Adamovich S, Berkinblit M, Tunik E, Poizner H (2003) Influence of movement speed on accuracy and coordination of reaching movements to memorized targets in three dimensional space in a deafferented subject. Exp Brain Res 150:399–416

    PubMed  Google Scholar 

  • Mongeon D, Blanchet P, Messier J (2009) Impact of Parkinson’s disease and dopaminergic medication on proprioceptive processing. Neuroscience 158:426–440

    Article  CAS  PubMed  Google Scholar 

  • Mongeon D, Blanchet PJ, Messier J (2013) Impact of Parkinson's disease and dopaminergic medication on adaptation to explicit and implicit visuomotor perturbations. Brain Cogni 81(2):271–282

    Article  Google Scholar 

  • Nagy A, Eördegh G, Paróczy Z, Márkus Z, Benedek G (2006) Multisensory integration in the basal ganglia. Eur J Neurosci 24:917–924

    Article  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  • O’Suilleabhain P, Bullard J, Dewey RB (2001) Proprioception in Parkinson’s disease is acutely depressed by dopaminergic medications. J Neurol Neurosurg Psychiatr 71:607–610

    Article  PubMed Central  PubMed  Google Scholar 

  • Owen AM, Beksinska M, James M, Leigh PN, Summers BA, Marsden CD, Quinn NP, Sahakian BJ, Robbins TW (1993) Visuospatial memory deficits at different stages of Parkinson’s Disease. Neuropsychologia 31(7):627–644

    Article  CAS  PubMed  Google Scholar 

  • Perrot A, Bherer L, Messier J (2012) Preserved spatial memory for reaching to remembered three-dimensionsal targets in aging. Exp Aging Res 38(5):511–536

    Article  PubMed  Google Scholar 

  • Roy SA, Tunik E, Bastianen C, Fishbach A, Grafton ST, Houk JC (2008) Firing patterns of GPi neurons associated with primary movements and corrective submovements. Soc Neurosci Abstr 34:378.9

    Google Scholar 

  • Sacrey RL-A, Clark AM, Whishaw IQ (2009) Music attenuates excessive visual guidance of skilled reaching in adavanced but not mild Parkinson’s Disease. PLoS One 4(8):e6841

    Article  PubMed Central  PubMed  Google Scholar 

  • Schaap TS, Gonzales TI, Janssen TW, Brown SH (2015) Proprioceptively guided reaching movements in 3D space: effects of age, task complexity and handedness. Exp Brain Res 233(2):631–639

    Article  CAS  PubMed  Google Scholar 

  • Seiss E, Praamstra P, Hesse CW, Richhards H (2003) Proprioceptive sensory function in Parkinson’s disease and Huntington’s disease: evidence from proprioception-related EEG potentials. Exp Brain Res 148:308–319

    CAS  PubMed  Google Scholar 

  • Smith MA, Brandt J, Shadmehr R (2000) Motor disorder in Huntington’s disease begins as a dysfunction in error feedback control. Nature 403:544–549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tunik E, Adamovich SV, Poizner H, Feldman AG (2004) Deficits in rapid adjustments of movements according to task constraints in Parkinson's disease. Mov Disord 19(8):897–906

    Article  PubMed  Google Scholar 

  • Tunik E, Feldman AG, Poizner H (2007) Dopamine replacement therapy does not restore the ability of Parkinsonian patients to make rapid adjustments in motor strategies according to changing sensorimotor contexts. Parkinsonism Relat Disord 13:425–433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tunik E, Houk JC, Grafton ST (2009) Basal ganglia contributions to the initiation of corrective submovements. NeuroImage 47:1757–1766

    Article  PubMed  Google Scholar 

  • Wolpert DM, Ghahramani Z (2000) Computational principles of movement neuroscience. Nat Neurosci 3:1212–1217

    Article  CAS  PubMed  Google Scholar 

  • Zia S, Cody F, O’Boyle D (2000) Joint position sense is impaired by Parkinson’s disease. Ann Neurol 47(2):218–228

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all participants for their patience during the data-collection sessions. We also thank M. Beaulieu for writing the software for data analysis and J. Kalaska for reading a previous version of this manuscript. This work was supported by a Canadian Institutes of Health Research doctoral research award to D.M and by an operating grant from the Parkinson Society Canada (J.M).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Mongeon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mongeon, D., Blanchet, P., Bergeron, S. et al. Impact of Parkinson’s disease on proprioceptively based on-line movement control. Exp Brain Res 233, 2707–2721 (2015). https://doi.org/10.1007/s00221-015-4343-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-015-4343-4

Keywords

Navigation