Skip to main content

Advertisement

Log in

Current issues for mammalian species identification in forensic science: a review

  • Review
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Mammalian species identification is one of the important issues in forensic science. Determining the origins of non-human biological material found at crime scenes can increase the possibility of identifying the true culprit by narrowing down the range of suspects. Although many techniques based on mitochondrial DNA (mtDNA) have been developed, challenges remain to cost-effectively identify species from degraded samples containing a mixture of DNA from multiple species and to standardize procedures for mammalian species identification. This review evaluates the reliability and versatility of mtDNA-based techniques to reveal obstacles to the establishment of standard analytical methods, with a particular focus on DNA mixtures. When samples contain a mixture of DNA from multiple species, the interpretation of sequencing analysis results is difficult. Although DNA metabarcoding using next-generation sequencing (NGS) technologies can overcome the DNA mixture problem, DNA metabarcoding is not suitable for the type of small-scale analysis routinely performed by local forensic laboratories, primarily because it is costly and time-consuming. By contrast, fluorescent multiplex PCR analysis enables cost-effective and simultaneous species identification from suboptimal samples, although the number of identifiable species is currently limited in comparison with sequencing techniques. The advantages and limitations of current techniques presented in this review indicate that multiplex PCR analysis will continue to be important for mammalian species identification in forensic casework analysis. Further developments in multiplex PCR analysis that enable the identification of an increased number of species will play a key step for standardization efforts among forensic laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Butler JM (2012) Advanced topics in forensic DNA typing. Elsevier Academic Press

  2. Parson W, Ballard D, Budowle B, Butler JM, Gettings KB, Gill P, Gusmão L, Hares DR, Irwin JA, King JL, Knijff P, Morling N, Prinz M, Schneider PM, Neste CV, Willuweit S, Phillips C (2016) Massively parallel sequencing of forensic STRs: considerations of the DNA commission of the International Society for Forensic Genetics (ISFG) on minimal nomenclature requirements. Forensic Sci Int Genet 22:54–63. https://doi.org/10.1016/j.fsigen.2016.01.009

    Article  CAS  PubMed  Google Scholar 

  3. Savolainen P, Lundeberg J (1999) Forensic evidence based on mtDNA from dog and wolf hairs. J Forensic Sci 44:77–81. https://doi.org/10.1016/S1353-1131(99)90078-0

    Article  CAS  PubMed  Google Scholar 

  4. Schulz I, Schneider PM, Olek K, Rothschild MA, Tsokos M (2006) Examination of postmortem animal interference to human remains using cross-species multiplex PCR. Forensic Sci Med Pathol 2:95–101. https://doi.org/10.1385/FSMP:2:2:95

    Article  CAS  PubMed  Google Scholar 

  5. Naue J, Lutz-Bonengel S, Pietsch K, Sänger T, Schlauderer N, Schmidt U (2012) Bite through the tent. Int J Legal Med 126:483–488. https://doi.org/10.1007/s00414-012-0674-x

    Article  PubMed  Google Scholar 

  6. Iyengar A (2014) Forensic DNA analysis for animal protection and biodiversity conservation: a review. J Nat Conserv 22:195–205. https://doi.org/10.1016/j.jnc.2013.12.001

    Article  Google Scholar 

  7. Johnson RN, Wilson-Wilde L, Linacre A (2014) Current and future directions of DNA in wildlife forensic science. Forensic Sci Int Genet 10:1–11. https://doi.org/10.1016/j.fsigen.2013.12.007

    Article  CAS  PubMed  Google Scholar 

  8. Linacre A, Tobe SS (2011) An overview to the investigative approach to species testing in wildlife forensic science. Investig Genet 2:2. https://doi.org/10.1186/2041-2223-2-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Amendt J, Krettek R, Zehner R (2004) Forensic entomology. Naturwissenschaften 91:51–65. https://doi.org/10.1007/s00114-003-0493-5

    Article  CAS  PubMed  Google Scholar 

  10. Amendt J, Richards CS, Campobasso CP, Zehner R, Hall MJR (2011) Forensic entomology: applications and limitations. Forensic Sci Med Pathol 7:379–392. https://doi.org/10.1007/s12024-010-9209-2

    Article  CAS  PubMed  Google Scholar 

  11. GilArriortua M, Salona Bordas MI, Cainé LM, Pinheiro F, de Pancorbo MM (2013) Cytochrome b as a useful tool for the identification of blowflies of forensic interest (Diptera, Calliphoridae). Forensic Sci Int 228:132–136. https://doi.org/10.1016/j.forsciint.2013.02.037

    Article  CAS  PubMed  Google Scholar 

  12. Mafra I, Ferreira IMPLVO, Oliveira MBPP (2008) Food authentication by PCR-based methods. Eur Food Res Technol 227:649–665. https://doi.org/10.1007/s00217-007-0782-x

    Article  CAS  Google Scholar 

  13. Galimberti A, De Mattia F, Losa A et al (2013) DNA barcoding as a new tool for food traceability. Food Res Int 50:55–63. https://doi.org/10.1016/j.foodres.2012.09.036

    Article  CAS  Google Scholar 

  14. Ouchterlony O (1949) Antigen - antibody reactions in gels. Acta Pathol Microbiol Scand 26:507–515. https://doi.org/10.1111/j.1699-0463.1949.tb00751.x

    Article  CAS  PubMed  Google Scholar 

  15. Anhalt JP, Yu PK (1975) Counterimmunoelectrophoresis of pneumococcal antigens:improved sensitivity for the detection of types VII and XIV. J Clin Microbiol 2:510–515

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Inoi T, Yoshino M, Seta S (1994) Histological investigation of human and animal bone fragments by microradiography and its application to a forensic case. Rep Natl Res Inst Police Sci 47:92–101 [In Japanese]

    Google Scholar 

  17. Mulhern DM, Ubelaker DH (2001) Differences in osteon banding between human and nonhuman bone. J Forensic Sci 46:14952J. https://doi.org/10.1520/JFS14952J

    Article  Google Scholar 

  18. Hidaka S, Matsumoto M, Ohsako S et al (1998) A histometrical study on the long bones of raccoon dogs, Nyctereutes procyonoides and badgers, Meles meles. J Vet Med Sci 60:323–326. https://doi.org/10.1292/jvms.60.323

    Article  CAS  PubMed  Google Scholar 

  19. Gudea AI, Ștefan AC (2013) Histomorphometric, fractal and lacunarity comparative analysis of sheep (Ovis aries), goat (Capra hircus) and roe deer (Capreolus capreolus) compact bone samples. Folia Morphol (Warsz) 72:239–248. https://doi.org/10.5603/FM.2013.0039

    Article  CAS  Google Scholar 

  20. Yoshino M, Imaizumi K, Miyasaka S, Seta S (1994) Histological estimation of age at death using microradiographs of humeral compact bone. Forensic Sci Int 64:191–198. https://doi.org/10.1016/0379-0738(94)90231-3

    Article  CAS  PubMed  Google Scholar 

  21. Parson W, Pegoraro K, Niederstätter H et al (2000) Species identification by means of the cytochrome b gene. Int J Legal Med 114:23–28. https://doi.org/10.1007/s004140000134

    Article  CAS  PubMed  Google Scholar 

  22. Branicki W, Kupiec T, Pawlowski R (2003) Validation of cytochrome b sequence analysis as a method of species identification. J Forensic Sci 48:83–87. https://doi.org/10.1520/JFS2002128

    Article  CAS  PubMed  Google Scholar 

  23. Bravi CM, Lirón JP, Mirol PM, Ripoli MV, Peral-García P, Giovambattista G (2004) A simple method for domestic animal identification in Argentina using PCR-RFLP analysis of cytochrome b gene. Legal Med 6:246–251

    Article  CAS  Google Scholar 

  24. Dawnay N, Ogden R, McEwing R, Carvalho GR, Thorpe RS (2007) Validation of the barcoding gene COI for use in forensic genetic species identification. Forensic Sci Int 173:1–6. https://doi.org/10.1016/j.forsciint.2006.09.013

    Article  CAS  PubMed  Google Scholar 

  25. Kitano T, Umetsu K, Tian W, Osawa M (2007) Two universal primer sets for species identification among vertebrates. Int J Legal Med 121:423–427. https://doi.org/10.1007/s00414-006-0113-y

    Article  PubMed  Google Scholar 

  26. Imaizumi K, Akutsu T, Miyasaka S, Yoshino M (2007) Development of species identification tests targeting the 16S ribosomal RNA coding region in mitochondrial DNA. Int J Legal Med 121:184–191. https://doi.org/10.1007/s00414-006-0127-5

    Article  PubMed  Google Scholar 

  27. Tobe SS, Linacre AMT (2008) A multiplex assay to identify 18 European mammal species from mixtures using the mitochondrial cytochrome b gene. Electrophoresis 29:340–347. https://doi.org/10.1002/elps.200700706

    Article  CAS  PubMed  Google Scholar 

  28. Nakamura H, Muro T, Imamura S, Yuasa I (2009) Forensic species identification based on size variation of mitochondrial DNA hypervariable regions. Int J Legal Med 123:177–184. https://doi.org/10.1007/s00414-008-0306-7

    Article  PubMed  Google Scholar 

  29. Pereira F, Carneiro J, Matthiesen R, van Asch B, Pinto N, Gusmão L, Amorim A (2010) Identification of species by multiplex analysis of variable-length sequences. Nucleic Acids Res 38:e203–e203. https://doi.org/10.1093/nar/gkq865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ramón-Laca A, Linacre AMT, Gleeson DM, Tobe SS (2013) Identification multiplex assay of 19 terrestrial mammal species present in New Zealand. Electrophoresis 34:3370–3376. https://doi.org/10.1002/elps.201300324

    Article  CAS  PubMed  Google Scholar 

  31. Robin ED, Wong R (1988) Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. J Cell Physiol 136:507–513. https://doi.org/10.1002/jcp.1041360316

    Article  CAS  PubMed  Google Scholar 

  32. Tobe SS, Linacre AMT (2008) A technique for the quantification of human and non-human mammalian mitochondrial DNA copy number in forensic and other mixtures. Forensic Sci Int Genet 2:249–256. https://doi.org/10.1016/J.FSIGEN.2008.03.002

    Article  PubMed  Google Scholar 

  33. Holland MM, Parsons TJ (1999) Mitochondrial DNA sequence analysis - validation and use for forensic casework. Forensic Sci Rev 11:21–50

    CAS  PubMed  Google Scholar 

  34. Wasser SK, Houston CS, Koehler GM, Cadd GG, Fain SR (1997) Techniques for application of faecal DNA methods to field studies of Ursids. Mol Ecol 6:1091–1097. https://doi.org/10.1046/j.1365-294X.1997.00281.x

    Article  CAS  PubMed  Google Scholar 

  35. Deagle BE, Tollit DJ, Jarman SN et al (2005) Molecular scatology as a tool to study diet: analysis of prey DNA in scats from captive Steller sea lions. Mol Ecol 14:1831–1842. https://doi.org/10.1111/j.1365-294X.2005.02531.x

    Article  CAS  PubMed  Google Scholar 

  36. Tillmar AO, Dell’Amico B, Welander J, Holmlund G (2013) A universal method for species identification of mammals utilizing next generation sequencing for the analysis of DNA mixtures. PLoS One 8:e83761. https://doi.org/10.1371/journal.pone.0083761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Arulandhu AJ, Staats M, Hagelaar R, Voorhuijzen MM, Prins TW, Scholtens I, Costessi A, Duijsings D, Rechenmann F, Gaspar FB, Barreto Crespo MT, Holst-Jensen A, Birck M, Burns M, Haynes E, Hochegger R, Klingl A, Lundberg L, Natale C, Niekamp H, Perri E, Barbante A, Rosec JP, Seyfarth R, Sovová T, van Moorleghem C, van Ruth S, Peelen T, Kok E (2017) Development and validation of a multi-locus DNA metabarcoding method to identify endangered species in complex samples. Gigascience 6:6–18. https://doi.org/10.1093/gigascience/gix080

    Article  Google Scholar 

  38. Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465. https://doi.org/10.1038/290457a0

    Article  CAS  PubMed  Google Scholar 

  39. Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N (1999) Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 23:147–147. https://doi.org/10.1038/13779

    Article  CAS  PubMed  Google Scholar 

  40. Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27:1767–1780. https://doi.org/10.1093/nar/27.8.1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ginther C, Issel-Tarver L, King MC (1992) Identifying individuals by sequencing mitochondrial DNA from teeth. Nat Genet 2:135–138. https://doi.org/10.1038/ng1092-135

    Article  CAS  PubMed  Google Scholar 

  42. Holland MM, Fisher DL, Mitchell LG, Rodriquez WC, Canik JJ, Merril CR, Weedn VW (1993) Mitochondrial DNA sequence analysis of human skeletal remains: identification of remains from the Vietnam War. J Forensic Sci 38:542–553. https://doi.org/10.1520/jfs13439j

    Article  CAS  PubMed  Google Scholar 

  43. Wilson MR, Polanskey D, Butler J, DiZinno J, Replogle J, Budowle B (1995) Extraction, PCR amplification and sequencing of mitochondrial DNA from human hair shafts. Biotechniques 18:662–669

    CAS  PubMed  Google Scholar 

  44. Kocher TD, Thomas WK, Meyer A, Edwards SV, Paabo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci 86:6196–6200. https://doi.org/10.1073/pnas.86.16.6196

    Article  CAS  PubMed  Google Scholar 

  45. Johns GC, Avise JC (1998) A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b gene. Mol Biol Evol 15:1481–1490. https://doi.org/10.1093/oxfordjournals.molbev.a025875

    Article  CAS  PubMed  Google Scholar 

  46. Hsieh HM, Chiang HL, Tsai LC, Lai SY, Huang NE, Linacre A, Lee JCI (2001) Cytochrome b gene for species identification of the conservation animals. Forensic Sci Int 122:7–18. https://doi.org/10.1016/S0379-0738(01)00403-0

    Article  CAS  PubMed  Google Scholar 

  47. Ewart KM, Frankham GJ, McEwing R, Webster LMI, Ciavaglia SA, Linacre AMT, The DT, Ovouthan K, Johnson RN (2018) An internationally standardized species identification test for use on suspected seized rhinoceros horn in the illegal wildlife trade. Forensic Sci Int Genet 32:33–39. https://doi.org/10.1016/j.fsigen.2017.10.003

    Article  CAS  PubMed  Google Scholar 

  48. Karlsson AO, Holmlund G (2007) Identification of mammal species using species-specific DNA pyrosequencing. Forensic Sci Int 173:16–20. https://doi.org/10.1016/j.forsciint.2007.01.019

    Article  CAS  PubMed  Google Scholar 

  49. Naidu A, Fitak RR, Munguia-Vega A, Culver M (2012) Novel primers for complete mitochondrial cytochrome b gene sequencing in mammals. Mol Ecol Resour 12:191–196. https://doi.org/10.1111/j.1755-0998.2011.03078.x

    Article  CAS  PubMed  Google Scholar 

  50. Lopez-Oceja A, Gamarra D, Borragan S, Jiménez-Moreno S, de Pancorbo MM (2016) New cyt b gene universal primer set for forensic analysis. Forensic Sci Int Genet 23:159–165. https://doi.org/10.1016/j.fsigen.2016.05.001

    Article  CAS  PubMed  Google Scholar 

  51. Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc B Biol Sci 270:313–321. https://doi.org/10.1098/rspb.2002.2218

    Article  CAS  Google Scholar 

  52. Ratnasingham S, Hebert PDN (2007) BOLD: the barcode of life data system: barcoding. Mol Ecol Notes 7:355–364. https://doi.org/10.1111/j.1471-8286.2007.01678.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Frézal L, Leblois R (2008) Four years of DNA barcoding: current advances and prospects. Infect Genet Evol 8:727–736

    Article  Google Scholar 

  54. Wilson-Wilde L, Norman J, Robertson J, Sarre S, Georges A (2010) Current issues in species identification for forensic science and the validity of using the cytochrome oxidase I (COI) gene. Forensic Sci Med Pathol 6:233–241. https://doi.org/10.1007/s12024-010-9172-y

    Article  CAS  PubMed  Google Scholar 

  55. Murray BW, McClymont RA, Strobeck C (1995) Forensic identification of ungulate species using restriction digests of PCR-amplified mitochondrial DNA. J Forensic Sci 40:13861J. https://doi.org/10.1520/jfs13861j

    Article  Google Scholar 

  56. Pfeiffer I, Burger J, Brenig B (2004) Diagnostic polymorphisms in the mitochondrial cytochrome b gene allow discrimination between cattle, sheep, goat, roe buck and deer by PCR-RFLP. BMC Genet 5:30. https://doi.org/10.1186/1471-2156-5-30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Girish PS, Anjaneyulu ASR, Viswas KN, Shivakumar BM, Anand M, Patel M, Sharma B (2005) Meat species identification by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) of mitochondrial 12S rRNA gene. Meat Sci 70:107–112. https://doi.org/10.1016/j.meatsci.2004.12.004

    Article  CAS  PubMed  Google Scholar 

  58. Murugaiah C, Noor ZM, Mastakim M, Bilung LM, Selamat J, Radu S (2009) Meat species identification and Halal authentication analysis using mitochondrial DNA. Meat Sci 83:57–61. https://doi.org/10.1016/j.meatsci.2009.03.015

    Article  CAS  PubMed  Google Scholar 

  59. Chen SY, Yao YG, Liu YP (2012) Species identification of ten common farm animals based on mitochondrial 12S rRNA gene polymorphisms. Anim Biotechnol 23:213–220. https://doi.org/10.1080/10495398.2012.696568

    Article  CAS  PubMed  Google Scholar 

  60. Haider N, Nabulsi I, Al-Safadi B (2012) Identification of meat species by PCR-RFLP of the mitochondrial COI gene. Meat Sci 90:490–493. https://doi.org/10.1016/J.MEATSCI.2011.09.013

    Article  CAS  PubMed  Google Scholar 

  61. Matsunaga T, Chikuni K, Tanabe R, Muroya S, Shibata K, Yamada J, Shinmura Y (1999) A quick and simple method for the identification of meat species and meat products by PCR assay. Meat Sci 51:143–148. https://doi.org/10.1016/S0309-1740(98)00112-0

    Article  CAS  PubMed  Google Scholar 

  62. Dalmasso A, Fontanella E, Piatti P, Civera T, Rosati S, Bottero MT (2004) A multiplex PCR assay for the identification of animal species in feedstuffs. Mol Cell Probes 18:81–87. https://doi.org/10.1016/j.mcp.2003.09.006

    Article  CAS  PubMed  Google Scholar 

  63. Deagle BE, Eveson JP, Jarman SN (2006) Quantification of damage in DNA recovered from highly degraded samples - a case study on DNA in faeces. Front Zool 3:11. https://doi.org/10.1186/1742-9994-3-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Coghlan ML, Haile J, Houston J, Murray DC, White NE, Moolhuijzen P, Bellgard MI, Bunce M (2012) Deep sequencing of plant and animal DNA contained within traditional Chinese medicines reveals legality issues and health safety concerns. PLoS Genet 8:e1002657. https://doi.org/10.1371/journal.pgen.1002657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ripp F, Krombholz CF, Liu Y, Weber M, Schäfer A, Schmidt B, Köppel R, Hankeln T (2014) All-Food-Seq (AFS): a quantifiable screen for species in biological samples by deep DNA sequencing. BMC Genomics 15:639. https://doi.org/10.1186/1471-2164-15-639

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bertolini F, Ghionda MC, D’Alessandro E, Geraci C, Chiofalo V, Fontanesi L (2015) A next generation semiconductor based sequencing approach for the identification of meat species in DNA mixtures. PLoS One 10:e0121701. https://doi.org/10.1371/journal.pone.0121701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ribani A, Schiavo G, Utzeri VJ, Bertolini F, Geraci C, Bovo S, Fontanesi L (2018) Application of next generation semiconductor based sequencing for species identification in dairy products. Food Chem 246:90–98. https://doi.org/10.1016/j.foodchem.2017.11.006

    Article  CAS  PubMed  Google Scholar 

  68. Meier R, Wong W, Srivathsan A, Foo M (2016) $1 DNA barcodes for reconstructing complex phenomes and finding rare species in specimen-rich samples. Cladistics 32:100–110. https://doi.org/10.1111/cla.12115

    Article  Google Scholar 

  69. Staats M, Arulandhu AJ, Gravendeel B, Holst-Jensen A, Scholtens I, Peelen T, Prins TW, Kok E (2016) Advances in DNA metabarcoding for food and wildlife forensic species identification. Anal Bioanal Chem 408:4615–4630

    Article  CAS  Google Scholar 

  70. Şakalar E, Abasiyanik MF (2012) The development of duplex real-time PCR based on SYBR Green florescence for rapid identification of ruminant and poultry origins in foodstuff. Food Chem 130:1050–1054. https://doi.org/10.1016/j.foodchem.2011.07.130

    Article  CAS  Google Scholar 

  71. Köppel R, Daniels M, Felderer N, Brünen-Nieweler C (2013) Multiplex real-time PCR for the detection and quantification of DNA from duck, goose, chicken, turkey and pork. Eur Food Res Technol 236:1093–1098. https://doi.org/10.1007/s00217-013-1973-2

    Article  CAS  Google Scholar 

  72. You J, Huang L, Zhuang J, Mou Z (2014) Species-specific multiplex real-time PCR assay for identification of deer and common domestic animals. Food Sci Biotechnol 23:133–139. https://doi.org/10.1007/s10068-014-0018-3

    Article  Google Scholar 

  73. Wadle S, Lehnert M, Schuler F, Köppel R, Serr A, Zengerle R, von Stetten F (2016) Simplified development of multiplex real-time PCR through master mix augmented by universal fluorogenic reporters. Biotechniques 61:123–128. https://doi.org/10.2144/000114443

    Article  CAS  PubMed  Google Scholar 

  74. Thanakiatkrai P, Kitpipit T (2017) Meat species identification by two direct-triplex real-time PCR assays using low resolution melting. Food Chem 233:144–150. https://doi.org/10.1016/j.foodchem.2017.04.090

    Article  CAS  PubMed  Google Scholar 

  75. Kanthaswamy S, Premasuthan A, Ng J, Satkoski J, Goyal V (2012) Quantitative real-time PCR (qPCR) assay for human-dog-cat species identification and nuclear DNA quantification. Forensic Sci Int Genet 6:290–295. https://doi.org/10.1016/j.fsigen.2011.06.005

    Article  CAS  PubMed  Google Scholar 

  76. Naue J, Lutz-Bonengel S, Sänger T, Schlauderer N, Schmidt U (2014) Modular real-time PCR screening assay for common European animal families. Int J Legal Med 128:11–18. https://doi.org/10.1007/s00414-013-0857-0

    Article  CAS  PubMed  Google Scholar 

  77. Kitpipit T, Penchart K, Ouithavon K, Satasook C, Linacre A, Thanakiatkrai P (2016) A novel real time PCR assay using melt curve analysis for ivory identification. Forensic Sci Int 267:210–217. https://doi.org/10.1016/j.forsciint.2016.08.037

    Article  CAS  PubMed  Google Scholar 

  78. Ishida N, Sakurada M, Kusunoki H, Ueno Y (2018) Development of a simultaneous identification method for 13 animal species using two multiplex real-time PCR assays and melting curve analysis. Legal Med 30:64–71. https://doi.org/10.1016/J.LEGALMED.2017.11.007

    Article  CAS  PubMed  Google Scholar 

  79. Faltin B, Wadle S, Roth G, Zengerle R, von Stetten F (2012) Mediator probe PCR: a novel approach for detection of real-time PCR based on label-free primary probes and standardized secondary universal fluorogenic reporters. Clin Chem 58:1546–1556. https://doi.org/10.1373/clinchem.2012.186734

    Article  CAS  PubMed  Google Scholar 

  80. Monden Y, Takasaki K, Futo S, Niwa K, Kawase M, Akitake H, Tahara M (2014) A rapid and enhanced DNA detection method for crop cultivar discrimination. J Biotechnol 185:57–62. https://doi.org/10.1016/j.jbiotec.2014.06.013

    Article  CAS  PubMed  Google Scholar 

  81. Tian L, Sato T, Niwa K, Kawase M, Tanner ACR, Takahashi N (2014) Rapid and sensitive PCR-dipstick DNA chromatography for multiplex analysis of the oral microbiota. Biomed Res Int 2014:180323–180310. https://doi.org/10.1155/2014/180323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ito F, Onishi R, Yasue H, Nishibori M (2016) Application study on molecular discrimination for living animal species in human sphere of life. DNA Polymorph 24:87–89 [In Japanese]

    Google Scholar 

  83. Kitpipit T, Thanakiatkrai P, Penchart K, Ouithavon K, Satasook C, Linacre A (2016) Ivory species identification using electrophoresis-based techniques. Electrophoresis 37:3068–3075. https://doi.org/10.1002/elps.201600275

    Article  CAS  PubMed  Google Scholar 

  84. Ewart KM, Frankham GJ, McEwing R, The DT, Hogg CJ, Wade C, Lo N, Johnson RN (2018) A rapid multiplex PCR assay for presumptive species identification of rhinoceros horns and its implementation in Vietnam. PLoS One 13:e0198565. https://doi.org/10.1371/journal.pone.0198565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lee JN, Jiang M, Wen Y, Li SL, Yuan GR (2018) Multiplex assay for identifying animal species found in the Tibetan area using the mitochondrial 12S rRNA gene. Anim Biotechnol 29:75–80. https://doi.org/10.1080/10495398.2017.1350690

    Article  CAS  PubMed  Google Scholar 

  86. Prusakova OV, Glukhova XA, Afanas’eva GV et al (2018) A simple and sensitive two-tube multiplex PCR assay for simultaneous detection of ten meat species. Meat Sci 137:34–40. https://doi.org/10.1016/j.meatsci.2017.10.017

    Article  CAS  PubMed  Google Scholar 

  87. Thanakiatkrai P, Dechnakarin J, Ngasaman R, Kitpipit T (2019) Direct pentaplex PCR assay: an adjunct panel for meat species identification in Asian food products. Food Chem 271:767–772. https://doi.org/10.1016/j.foodchem.2018.07.143

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Chikahiro Mori: conceptualization and writing—original draft preparation. Shuichi Matsumura: supervision and writing—reviewing and editing.

Corresponding author

Correspondence to Chikahiro Mori.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mori, C., Matsumura, S. Current issues for mammalian species identification in forensic science: a review. Int J Legal Med 135, 3–12 (2021). https://doi.org/10.1007/s00414-020-02341-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-020-02341-w

Keywords

Navigation