Skip to main content

Advertisement

Log in

Forensic entomology: applications and limitations

  • Continuing Medical Education Review
  • Published:
Forensic Science, Medicine, and Pathology Aims and scope Submit manuscript

Abstract

Forensic entomology is the science of collecting and analysing insect evidence to aid in forensic investigations. Its main application is in the determination of the minimum time since death in cases of suspicious death, either by estimating the age of the oldest necrophagous insects that developed on the corpse, or by analysing the insect species composition on the corpse. In addition, toxicological and molecular examinations of these insects may help reveal the cause of death or even the identity of a victim, by associating a larva with its last meal, for example, in cases where insect evidence is left at a scene after human remains have been deliberately removed. Some fly species can develop not only on corpses but on living bodies too, causing myiasis. Analysis of larvae in such cases can demonstrate the period of neglect of humans or animals. Without the appropriate professional collection of insect evidence, an accurate and convincing presentation of such evidence in court will be hampered or even impossible. The present paper describes the principles and methods of forensic entomology and the optimal techniques for collecting insect evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Amendt J, Campobasso CP, Gaudry E, Reiter C, LeBlanc HN, Hall MJR. Best practice in forensic entomology–standards and guidelines. Int J Legal Med. 2007;121:90–104.

    Article  PubMed  Google Scholar 

  2. Catts EP. Problems in estimating the post-mortem interval in death investigations. J Agric Entomol. 1992;9:245–55.

    Google Scholar 

  3. Campobasso CP, Introna F. The forensic entomologist in the context of the forensic pathologist’s role. Forensic Sci Int. 2001;120:132–9.

    Article  PubMed  CAS  Google Scholar 

  4. Campobasso CP, Di Vella G, Introna F. Factors affecting decomposition and Diptera colonization. Forensic Sci Int. 2001;120:18–27.

    Article  PubMed  CAS  Google Scholar 

  5. Bourel B, Callet B, Hedouni V, Gosset D. Flies eggs: a new method for the estimation of short-term post-mortem interval? Forensic Sci Int. 2003;135:27–34.

    Article  PubMed  Google Scholar 

  6. Richards CS, Crous KL, Villet MH. Models of development for blowfly sister species Chrysomya chloropyga and Chrysomya putoria. Med Vet Entomol. 2009;23:56–61.

    Article  PubMed  CAS  Google Scholar 

  7. Zumpt F. Myiasis in man and animals in the old world. London: Butterworths; 1965. pp. xv + 267.

  8. Smith KGV. A manual of forensic entomology. London: The Trustees, British Museum; 1986. p. 1–205.

    Google Scholar 

  9. Szpila K. Keys for the identification of third instars of European blowflies (Diptera: Calliphoridae) of forensically importance. In: Amendt J, Campobasso CP, Goff ML, Grassberger M, editors. Current concepts in forensic entomology. Dordrecht: Springer; 2010. p. 109–37.

    Google Scholar 

  10. Archer MS. The effect of time after body discovery on the accuracy of retrospective weather station ambient temperature corrections in forensic entomology. J Forensic Sci. 2004;49:1–7.

    Article  Google Scholar 

  11. Grassberger M, Reiter C. Effect of temperature on Lucilia sericata (Diptera: Calliphoridae) development with special reference to the isomegalen- and isomorphen-diagram. Forensic Sci Int. 2001;120:32–6.

    Article  PubMed  CAS  Google Scholar 

  12. Reiter C. Zum Wachstumsverhalten der Maden der blauen Schmeißfliege Calliphora vicina. Z Rechtsmed. 1984;91:295–308.

    Article  PubMed  CAS  Google Scholar 

  13. Higley LG, Haskel NH. Insect development and forensic entomology. In: Byrd JH, Castner JL, editors. Forensic entomology—the utility of arthropods in legal investigations. Boca Raton: CRC Press; 2010. p. 389–405.

    Google Scholar 

  14. Villet MH, Richards CS, Midgley JM. Contemporary precision, bias and accuracy of minimum post-mortem intervals estimated using development of carrion-feeding insects. In: Amendt J, Campobasso CP, Goff ML, Grassberger M, editors. Current concepts in forensic entomology. Dordrecht: Springer; 2010. p. 109–37.

    Google Scholar 

  15. Richards CS, Paterson ID, Villet MH. Estimating the age of immature Chrysomya albiceps (Diptera: Calliphoridae), correcting for temperature and geographical latitude. Int J Legal Med. 2008;122:271–9.

    Article  PubMed  Google Scholar 

  16. Donovan SE, Hall MJR, Turner BD, Moncrieff CB. Larval growth rates of the blowfly, Calliphora vicina, over a range of temperatures. Med Vet Entomol. 2006;20:106–14.

    Article  PubMed  CAS  Google Scholar 

  17. Adams ZJO, Hall MJR. Methods used for the killing and preservation of blowfly larvae, and their effect on post-mortem larval length. Forensic Sci Int. 2003;138:50–61.

    Article  PubMed  Google Scholar 

  18. Greenberg B, Kunich JC. Entomology and the law: flies as forensic indicators. Cambridge: Cambridge University Press; 2002. p. 1–306.

    Google Scholar 

  19. de Réaumur RAF. Day-degree methods for pest management. Environ Entomol. 1735;12:613–9.

    Google Scholar 

  20. Higley LG, Pedigo LP, Ostlie KR. Degday: a program for calculating degree-days, and assumptions behind the degree-day approach. Environ Entomol. 1986;15:999–1016.

    Google Scholar 

  21. Ikemoto T, Takai K. A new linearized formula for the law of total effective temperature and the evaluation of line-fitting methods with both variables subject to error. Environ Entomol. 2000;29:671–82.

    Article  Google Scholar 

  22. Megnin JP. La faune des cadavres Encyclopedie Scientifique des Aide-Memoire. Paris: Masson, Gauthier-Villars et Fils; 1894. p. 1–224.

    Google Scholar 

  23. Anderson GS. Factors that influence insect succession on carrion. In: Byrd JH, Castner JL, editors. Forensic entomology: the utility of arthropods in legal investigations. Boca Raton: CRC Press; 2010. p. 201–50.

    Google Scholar 

  24. Gaudry E. The insects colonisation of buried remains. In: Amendt J, Campobasso CP, Goff ML, Grassberger M, editors. Current concepts in forensic entomology. Dordrecht: Springer; 2010. p. 273–312.

    Google Scholar 

  25. Campobasso CP, Disney RHL, Introna F. A case of Megaselia scalaris (Loew) (Dipt., Phoridae) breeding in a human corpse. Aggrawal’s Internet J Forensic Med Tox. 2004;5:3–5.

    Google Scholar 

  26. VanLaerhoven SL. Ecological theory and its application in forensic entomology. In: Byrd JH, Castner JL, editors. Forensic entomology–the utility of arthropods in legal investigations. Boca Raton: CRC Press; 2010. p. 493–518.

    Google Scholar 

  27. Voss SC, Spafford H, Dadour IR. Annual and seasonal patterns of insect succession on decomposing remains at two locations in Western Australia. Forensic Sci Int. 2009;193:26–36.

    Article  PubMed  Google Scholar 

  28. Matuszewski S, Bajerlein D, Konwerski S, Szpila K. Insect succession and carrion decomposition in selected forests of Central Europe. Part 1: pattern and rate of decomposition. Forensic Sci Int. 2010;194:85–93.

    Article  PubMed  Google Scholar 

  29. Matuszewski S, Bajerlein D, Konwerski S, Szpila K. Insect succession and carrion decomposition in selected forests of Central Europe. Part 2: composition and residency patterns of carrion fauna. Forensic Sci Int. 2010;195:42–51.

    Article  PubMed  Google Scholar 

  30. Hall MJR, Smith KGV. Diptera causing myiasis in man. In: Lane RP, Crosskey RW, editors. Medical insects and arachnids. London: Chapman and Hall; 1993. p. 429.

    Google Scholar 

  31. Hall MJR, Wall R. Myiasis of humans and domestic animals. Adv Parasit. 1995;35:257–334.

    Article  CAS  Google Scholar 

  32. Hira PR, Assad R, Oshaka G, et al. Myiasis in Kuwait: nosocomial infections caused by Lucilia and Megaselia species. Am J Trop Med Hyg. 2004;70:386–9.

    PubMed  Google Scholar 

  33. Huntington TE, Voigt DW, Higley LG. Not the usual suspects: human wound myiasis by Phorids. J Med Entomol. 2008;45:157–9.

    Article  PubMed  CAS  Google Scholar 

  34. Anderson GS, Huitson NR. Myiasis in pet animals in British Columbia: the potential of forensic entomology for determining duration of possible neglect. Can Vet J. 2004;45:993–8.

    PubMed  Google Scholar 

  35. Hall MJR, Farkas R. Traumatic myiasis of humans and animals. In: Papp L, Darvas B, editors. Contributions to a manual of palaearctic Diptera. Budapest: Science Herald; 2000. p. 751–68.

    Google Scholar 

  36. Sherman RA. Wound myiasis in urban and suburban United States. Arch Intern Med. 2000;160:2004–14.

    Article  PubMed  CAS  Google Scholar 

  37. Fotedar R, Banerjee U, Verma AK. Human cutaneous myiasis due to mixed infestation in a drug addict. Ann Trop Med Parasit. 1991;85:339–40.

    PubMed  CAS  Google Scholar 

  38. Smith DR, Clevenger RR. Nosocomial nasal myiasis. Arch Pathol Lab Med. 1986;110:439–40.

    PubMed  CAS  Google Scholar 

  39. Mielke U. Review of nosocomial myiasis. J Hosp Infect. 1997;37:1–5.

    Article  PubMed  CAS  Google Scholar 

  40. Chen JCM, Lee JSW, Dai DLK, Woo J. Unusual cases of human myiasis due to old world screwworm fly acquired indoors in Hong Kong. Trans R Soc Trop Med Hyg. 2005;99:914–8.

    Article  Google Scholar 

  41. Chemonges-Nielsen S. Chrysomya bezziana in pet dogs in Hong Kong: a potential threat to Australia. Aust Vet J. 2003;81:202–5.

    Article  PubMed  CAS  Google Scholar 

  42. Simmers L. Diversified health occupations. 2nd ed. Canada: Delmar; 1988. p. 150–1.

    Google Scholar 

  43. Greenberg B. Two cases of human myiasis caused by Phaenicia sericata (Diptera: Calliphoridae) in Chicago area hospitals. J Med Entomol. 1984;21:615.

    PubMed  CAS  Google Scholar 

  44. Beyer JC, Enos WF, Stajic M. Drug identification through analysis of maggots. J Forensic Sci. 1980;25:411–2.

    PubMed  CAS  Google Scholar 

  45. Kintz P, Godelar A, Tracqui A, Mangin P, Lugnier AA, Chaumont AJ. Fly larvae: a new toxicological method of investigation in forensic medicine. J Forensic Sci. 1990;35:204–7.

    PubMed  CAS  Google Scholar 

  46. Gagliano-Candela R, Aventaggiato L. The detection of toxic substances in entomological specimens. Int J Legal Med. 2001;114:197–203.

    Article  PubMed  CAS  Google Scholar 

  47. Nolte KB, Pinder RD, Lord WD. Insect larvae used to detect cocaine poisoning in a decomposed body. J Forensic Sci. 1992;37:1179–85.

    PubMed  CAS  Google Scholar 

  48. Introna F, Campobasso CP, Goff ML. Entomotoxicology. Forensic Sci Int. 2001;120:42–7.

    Article  PubMed  CAS  Google Scholar 

  49. Carvalho LML. Toxicology and forensic entomology. In: Amendt J, Campobasso CP, Goff ML, Grassberger M, editors. Current concepts in forensic entomology. Dordrecht: Springer; 2010. p. 163–78.

    Google Scholar 

  50. Pien K, Laloup M, Pipeleers-Marichal M, et al. Toxicological data and growth characteristics of single post-feeding larvae and puparia of Calliphora vicina (Diptera: Calliphoridae) obtained from a controlled nordiazepam study. Int J Leg Med. 2004;118:190–3.

    Article  Google Scholar 

  51. Miller ML, Lord WD, Goff ML, Donnelly B, McDonough ET, Alexis JC. Isolation of amitrptyline and nortriptyline from fly puparia (Phoridae) and beetle exuviae (Dermestidae) associated with mummified human remains. J Forensic Sci. 1994;39:1305–13.

    CAS  Google Scholar 

  52. Levine B, Golle M, Smialek JE. An unusual drug death involving maggots. Am J Forensic Med Pathol. 2000;21:59–61.

    Article  PubMed  CAS  Google Scholar 

  53. Williams KR, Pounder D. Site-to-site variability of drug concentrations in skeletal muscle. Am J Forensic Med Pathol. 1997;18:246–50.

    Article  PubMed  CAS  Google Scholar 

  54. Bourel B, Fleurisse L, Hédouin V, Cailliez JC, Creusy C, Gosset D, Goff ML. Immunohistochemical contribution to the study of morphine metabolism in Calliphoridae larvae and implications in forensic entomotoxicology. J Forensic Sci. 2001;46:596–9.

    PubMed  CAS  Google Scholar 

  55. Alves JR, Thyssen GP, Giorgio S, Mello MMF, Linhares AX. Detection of cocaine in Chrysomya albiceps (Diptera: Calliphoridae) larvae reared from a human corpse: report of a forensic entomology case in southeastern Brazil. Ann Entomol Soc Am—ESA, 55th ESA annual meeting, Denver (USA), 6–12 Dec 2007.

  56. Introna F, Lo Dico C, Caplan YH, Smialek JE. Opiate analysis of cadaveric blow fly larvae as an indicator of narcotic intoxication. J Forensic Sci. 1990;35:118–22.

    PubMed  Google Scholar 

  57. Campobasso CP, Gherardi M, Caligara M, Sironi L, Introna F. Drug analysis in blowfly larvae and in human tissues: a comparative study. Int J Leg Med. 2004;118:210–4.

    Article  Google Scholar 

  58. Sadler DW, Fuke C, Court F, Pounder DJ. Drug accumulation and elimination in Calliphora vicina larvae. Forensic Sci Int. 1995;71:191–7.

    Article  PubMed  CAS  Google Scholar 

  59. Hédouin V, Bourel B, Martin-Bouyer L, Bécart A, Tournel G, Deveaux M, Gosset D. Determination of drug levels in larvae of Lucilia sericata (Diptera: Calliphoridae) reared on rabbit carcasses containing morphine. J Forensic Sci. 1999;44:351–3.

    PubMed  Google Scholar 

  60. Kaneshrajah G, Turner B. Calliphora vicina larvae at different rates on different body tissues. Int J Leg Med. 2004;118:242–4.

    Article  Google Scholar 

  61. Gunatilake K, Goff ML. Detection of organophosphate poisoning in a putrefying body by analyzing arthropod larvae. J Forensic Sci. 1989;34:714–6.

    PubMed  CAS  Google Scholar 

  62. Fremdt H, Kauert G, Zehner R, Pogoda W, Kettner M, Pape A, Amendt J. Influence of rohypnol® and ethanol on succession and development of necrophagous insects. In: Proceedings 6th EAFE meeting, Crete (Greece) 2008.

  63. Amendt J, Zehner R, Johnson DG, Wells JD. Future trends in forensic entomology. In: Amendt J, Campobasso CP, Goff ML, Grassberger M, editors. Current concepts in forensic entomology. Dordrecht: Springer; 2010. p. 353–68.

    Chapter  Google Scholar 

  64. Goff ML, Omori AI, Goodbrod JR. Effect of cocaine in tissues on the rate of development of Boettcherisca peregrina (Diptera: Sarcophagidae). J Med Entomol. 1989;26:91–3.

    PubMed  CAS  Google Scholar 

  65. Goff ML, Brown WA, Hewadikaram KA, Omori AI. Effects of heroin in decomposing tissues on the development rate of Boettcherisca peregrina (Diptera: Sarcophagidae) and implications of this effect on estimation of post-mortem intervals using arthropod development patterns. J Forensic Sci. 1991;36:537–42.

    PubMed  CAS  Google Scholar 

  66. Bourel B, Hédouin V, Martin-Bouyer L, Becart A, Tournel G, Deveaux M, Gosset D. Effects of morphine in decomposing bodies on the development of Lucilia sericata (Diptera: Calliphoridae). J Forensic Sci. 1999;44:354–8.

    PubMed  CAS  Google Scholar 

  67. O’Brien C, Turner B. Impact of paracetamol on Calliphora vicina larval development. Int J Leg Med. 2004;118:188–9.

    Article  Google Scholar 

  68. Zehner R, Amendt J, Schütt S, Sauer S, Krettek R, Povolný D. Genetic identification of forensically important flesh flies (Diptera : Sarcophagidae). Int J Leg Med. 2004;118:245–7.

    Article  Google Scholar 

  69. Wells JD, Stevens JR. Application of DNA-based methods in forensic entomology. Annu Rev Entomol. 2008;53:103–20.

    Article  PubMed  CAS  Google Scholar 

  70. Mazzanti M, Alessandrini F, Tagliabracci A, Wells J, Campobasso C. DNA degradation and genetic analysis of empty puparia: genetic identification limits in forensic entomology. Forensic Sci Int. 2010;195:99–102.

    Article  PubMed  CAS  Google Scholar 

  71. Wells JD, Wall R, Stevens JR. Phylogenetic analysis of forensically important Lucilia flies based on cytochrome oxidase I sequence: a cautionary tale for forensic species determination. Int J Leg Med. 2007;121:229–33.

    Article  Google Scholar 

  72. Nelson LA, Wallman JF, Dowton M. Identification of forensically important Chrysomya (Diptera: Calliphoridae) species using the second ribosomal internal transcribed spacer (ITS2). Forensic Sci Int. 2008;177:238–47.

    Article  PubMed  CAS  Google Scholar 

  73. Stevens JR, Wall R, Wells JD. Paraphyly in Hawaiian hybrid blowfly populations and the evolutionary history of anthropophilic species. Insect Mol Biol. 2002;11:141–8.

    Article  PubMed  CAS  Google Scholar 

  74. Tourle R, Downie DA, Villet MH. Flies in the ointment: a morphological and molecular comparison of Lucilia cuprina and Lucilia sericata (Diptera: Calliphoridae) in South Africa. Med Vet Entomol. 2009;23:6–14.

    Article  PubMed  CAS  Google Scholar 

  75. Whitworth TL, Dawson RD, Magalon H, Baudry E. DNA barcoding cannot reliably identify species of the blowfly genus Protocalliphora (Diptera: Calliphoridae). Proc R Soc B. 2007;274:1731–9.

    Article  PubMed  CAS  Google Scholar 

  76. Campobasso CP, Linville JG, Wells JD, Introna F. Forensic genetic analysis of insect gut contents. Am J Forensic Med Pathol. 2005;26:161–5.

    PubMed  Google Scholar 

  77. Wells JD, Introna F, Di Vella G, Campobasso CP, Hayes J, Sperling FA. Human and insect mitochondrial DNA analysis from maggots. J Forensic Sci. 2001;46:685–7.

    PubMed  CAS  Google Scholar 

  78. Zehner R, Amendt J, Krettek R. STR typing of human DNA from fly larvae fed on decomposing bodies. J Forensic Sci. 2004;49:337–40.

    Article  PubMed  CAS  Google Scholar 

  79. Carvalho F, Dadour IR, Groth DM, Harvey ML. Isolation and detection of ingested DNA from the immature stages of Calliphora dubia (Diptera: Calliphoridae) A forensically important blowfly. Forensic Sci Med Pathol. 2005;1:261–5.

    Article  CAS  Google Scholar 

  80. Tarone AM, Kimberley C, Jennings MS, Foran DR. Aging blow fly eggs using gene expression: a feasibility study. J Forensic Sci. 2007;52:1350–4.

    Article  PubMed  CAS  Google Scholar 

  81. Zehner R, Amendt J. Boehme P: gene expression analysis as a tool for age estimation of blowfly pupae. For Sci Int Genet Suppl. 2009;2:292–3.

    Article  Google Scholar 

  82. Byrd JH, Lord WD, Wallace JR, Tomberlin JK. Collection of entomological evidence during death investigations. In: Byrd JH, Castner JL, editors. Forensic entomology: the utility of arthropods in legal investigations. Boca Raton: CRC Press; 2010. p. 127–76.

    Google Scholar 

  83. Midgley JM, Villet MH. Effect of the killing method on post-mortem change in length of larvae of Thanatophilus micans (Fabricius 1794) (Coleoptera: Silphidae) stored in 70% ethanol. Int J Leg Med. 2009;123:285–92.

    Article  Google Scholar 

  84. Goff LM, Campobasso CP, Gherardi M. Forensic implications of myiasis. In: Amendt J, Campobasso CP, Goff ML, Grassberger M, editors. Current concepts in forensic entomology. Dordrecht: Springer; 2010. p. 313–25.

    Google Scholar 

  85. Benecke M, Josephi E, Zweihoff R. Neglect of the elderly: forensic entomology cases and considerations. Forensic Sci Int. 2004;46:195–9.

    Article  Google Scholar 

  86. Campobasso CP, Marchetti D, Introna F, Colonna MF. Post-mortem artifacts made by ants and the effect of ant activity on decompositional rates. Am J Forensic Med Pathol. 2009;30:84–7.

    Article  PubMed  Google Scholar 

  87. Hwang CC, Turner BD. Small-scaled geographical variation in life-history traits of the blowfly Calliphora vicina between rural and urban populations. Entomol Exp Appl. 2009;132:218–24.

    Article  Google Scholar 

  88. Gallagher MB, Sandhu S, Kimsey R. Variation in developmental time for geographically distinct populations of the common green bottle fly, Lucilia sericata (Meigen). J Forensic Sci. 2010;55:438–42.

    Article  PubMed  Google Scholar 

  89. Greenberg B. Flies as forensic indicators. J Med Entomol. 1991;28:565–77.

    PubMed  CAS  Google Scholar 

  90. Drijhouft FP. Cuticular hydrocarbons: a new tool in forensic entomology? In: Amendt J, Campobasso CP, Goff ML, Grassberger M, editors. Current concepts in forensic entomology. Dordrecht: Springer; 2010. p. 179–203.

    Google Scholar 

  91. Midgley JM, Richards CS, Villet MH. The utility of Coleoptera in forensic investigations. In: Amendt J, Campobasso CP, Goff ML, Grassberger M, editors. Current concepts in forensic entomology. Dordrecht: Springer; 2010. p. 57–68.

    Google Scholar 

  92. Perotti MA, Braig HR, Goff ML. Phoretic mites and carcasses: Acari transported by organisms associated with animal and human decomposition. In: Amendt J, Campobasso CP, Goff ML, Grassberger M, editors. Current concepts in forensic entomology. Dordrecht: Springer; 2010. p. 179–203.

    Google Scholar 

  93. Tarone AM, Foran DR. Components of developmental plasticity in a Michigan population of Lucilia sericata (Diptera: Calliphoridae). J Forensic Sci. 2008;53:942–8.

    Article  PubMed  Google Scholar 

  94. Ieno EN, Amendt J, Fremdt H, Saveliev AA, Zuur AF. Analysing forensic entomology data using additive mixed effects modelling. In: Amendt J, Campobasso CP, Goff ML, Grassberger M, editors. Current concepts in forensic entomology. Dordrecht: Springer; 2010. p. 139–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Amendt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amendt, J., Richards, C.S., Campobasso, C.P. et al. Forensic entomology: applications and limitations. Forensic Sci Med Pathol 7, 379–392 (2011). https://doi.org/10.1007/s12024-010-9209-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12024-010-9209-2

Keywords

Navigation