Skip to main content

Advertisement

Log in

Simultaneous detection of eight cytokines in human dermal wounds with a multiplex bead-based immunoassay for wound age estimation

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

We performed quantification of IL 2, IL 4, IL 6, IL 8, IL 10, GM-CSF, IFN γ, and TNF α in human dermal wounds for wound age estimation. The proliferation of dermal cells and infiltration of inflammatory cells were also analyzed. Neutrophils and macrophages were detected from 2 h post-injury, and strong infiltrations were seen at 33–49 h. T and B lymphocytes also infiltrated simultaneously from 71 h. Strong proliferation of fibroblasts were shown from 246 h, and thickening of the epidermis from 71 h. IL 10, GM-CSF, IFNγ, and TNF α increased from the early phase of dermal wound healing, IL 6 exclusively in the middle phase, IL 2, IL 4, and IL 8 from the middle phase to the late phase. Among the cytokines analyzed in the present study, IL 6, IL 8, IFNγ, and TNF α were strongly expressed. Results of the present study suggest that multiplex cytokine analysis at the wound site can be useful for wound age estimation. In addition, multiplex data obtained from the same sample with a single method would demonstrate more accurate interactions of cytokines during dermal wound healing. Although the present study was oriented to practical forensic pathology, the data obtained would be informative for various fields of medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Betz P (1994) Histological and enzyme histochemical parameters for the age estimation of human skin wounds. Int J Legal Med 107:60–68

    Article  PubMed  CAS  Google Scholar 

  2. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  3. Breuhahn K, Mann A, Muller G et al (2000) Epidermal overexpression of granulocyte-macrophage colony-stimulating factor induces both keratinocyte proliferation and apoptosis. Cell Growth Differ 11:111–121

    PubMed  CAS  Google Scholar 

  4. Bussolino F, Wang JM, Defilippi P et al (1989) Granulocyte- and granulocyte-macrophage-colony stimulating factors induce human endothelial cells to migrate and proliferate. Nature 337:471–473

    Article  PubMed  CAS  Google Scholar 

  5. Castells-Rodellas A, Castell JV, Ramirez-Bosca A et al (1992) Interleukin-6 in normal skin and psoriasis. Acta Derm Venereol 72:165–168

    PubMed  CAS  Google Scholar 

  6. Dedhar S, Gaboury L, Galloway P et al (1988) Human granulocyte-macrophage colony-stimulating factor is a growth factor active on a variety of cell types of nonhemopoietic origin. Proc Natl Acad Sci USA 85:9253–9257

    Article  PubMed  CAS  Google Scholar 

  7. Fertin C, Nicolas JF, Gillery P et al (1991) Interleukin-4 stimulates collagen synthesis by normal and scleroderma fibroblasts in dermal equivalents. Cell Mol Biol 37:823–829

    PubMed  CAS  Google Scholar 

  8. Gillitzer R, Goebeler M (2001) Chemokines in cutaneous wound healing. J Leukoc Biol 69:513–521

    PubMed  CAS  Google Scholar 

  9. Hayashi T, Ishida Y, Kimura A et al (2004) Forensic application of VEGF expression to skin wound age determination. Int J Legal Med 118:320–325

    Article  PubMed  Google Scholar 

  10. Hernandez-Cueto C, Girela E, Sweet DJ (2000) Advances in the diagnosis of wound vitality: a review. Am J Forensic Med Pathol 21:21–31

    Article  PubMed  CAS  Google Scholar 

  11. Ishida Y, Kondo T, Takayasu T et al (2004) The essential involvement of cross-talk between IFN-gamma and TGF-beta in the skin wound-healing process. J Immunol 172:1848–1855

    PubMed  CAS  Google Scholar 

  12. Kirnbauer R, Kock A, Schwarz T et al (1989) IFN-beta 2, B cell differentiation factor 2, or hybridoma growth factor (IL-6) is expressed and released by human epidermal cells and epidermoid carcinoma cell lines. J Immunol 142:1922–1928

    PubMed  CAS  Google Scholar 

  13. Kock A, Schwarz T, Kirnbauer R et al (1990) Human keratinocytes are a source for tumor necrosis factor alpha: evidence for synthesis and release upon stimulation with endotoxin or ultraviolet light. J Exp Med 172:1609–1614

    Article  PubMed  CAS  Google Scholar 

  14. Kondo T, Ohshima T (1996) The dynamics of inflammatory cytokines in the healing process of mouse skin wound: a preliminary study for possible wound age determination. Int J Leg Med 108:231–236

    Article  CAS  Google Scholar 

  15. Kondo T, Ohshima T, Mori R et al (2002) Immunohistochemical detection of chemokines in human skin wounds and its application to wound age determination. Int J Leg Med 116:87–91

    Article  CAS  Google Scholar 

  16. Kondo T (2007) Timing of skin wounds. Legal Med 9:109–114

    Article  PubMed  Google Scholar 

  17. Kowanko IC, Ferrante A (1987) Stimulation of neutrophil respiratory burst and lysosomal enzyme release by human interferon-gamma. Immunology 62:149–151

    PubMed  CAS  Google Scholar 

  18. Li J, Ireland GW, Farthing PM et al (1996) Epidermal and oral keratinocytes are induced to produce RANTES and IL-8 by cytokine stimulation. J Invest Dermatol 106:661–666

    Article  PubMed  CAS  Google Scholar 

  19. Malek TR (2003) The main function of IL-2 is to promote the development of T regulatory cells. J Leukoc Biol 74:961–965

    Article  PubMed  CAS  Google Scholar 

  20. Nathan CF, Murray HW, Wiebe ME et al (1983) Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med 158:670–689

    Article  PubMed  CAS  Google Scholar 

  21. Newman SL, Henson JE, Henson PM (1982) Phagocytosis of senescent neutrophils by human monocyte-derived macrophages and rabbit inflammatory macrophages. J Exp Med 156:430–442

    Article  PubMed  CAS  Google Scholar 

  22. Ohshima T (2000) Forensic wound examination. Forensic Sci Int 113:153–164

    Article  PubMed  CAS  Google Scholar 

  23. Ohshima T, Sato Y (1998) Time-dependent expression of interleukin-10 (IL-10) mRNA during the early phase of skin wound healing as a possible indicator of wound vitality. Int J Leg Med 111:251–255

    Article  CAS  Google Scholar 

  24. Ortiz-Rey JA, Suarez-Penaranda JM, Da Silva EA et al (2002) Immunohistochemical detection of fibronectin and tenascin in incised human skin injuries. Forensic Sci Int 126:118–122

    Article  PubMed  CAS  Google Scholar 

  25. Paquet P, Pierard GE (1996) Interleukin-6 and the skin. Int Arch Allergy Immunol 109:308–317

    Article  PubMed  CAS  Google Scholar 

  26. Rennekampff HO, Hansbrough JF, Kiessig V et al (2000) Bioactive interleukin-8 is expressed in wounds and enhances wound healing. J Surg Res 93:41–54

    Article  PubMed  CAS  Google Scholar 

  27. Schroder JM (1995) Cytokine networks in the skin. J Invest Dermatol 105:20S–24S

    Article  PubMed  CAS  Google Scholar 

  28. Seitz M, Loetscher P, Dewald B et al (1995) Interleukin-10 differentially regulates cytokine inhibitor and chemokine release from blood mononuclear cells and fibroblasts. Eur J Immunol 25:1129–1132

    Article  PubMed  CAS  Google Scholar 

  29. Sticherling M, Hetzel F, Schroder JM et al (1993) Time- and stimulus-dependent secretion of NAP-1/IL-8 by human fibroblasts and endothelial cells. J Invest Dermatol 101:573–576

    Article  PubMed  CAS  Google Scholar 

  30. Strieter RM, Kasahara K, Allen RM et al (1992) Cytokine-induced neutrophil-derived interleukin-8. Am J Pathol 141:397–407

    PubMed  CAS  Google Scholar 

  31. Takamiya M, Saigusa K, Nakayashiki N et al (2003) Studies on mRNA expression of basic fibroblast growth factor in wound healing for wound age determination. Int J Leg Med 117:46–50

    Google Scholar 

  32. Takamiya M, Kumagai R, Nakayashiki N et al (2006) A study on mRNA expressions of fibronectin in dermal and cerebral wound healing for wound age estimation. Legal Med 8:214–219

    Article  PubMed  CAS  Google Scholar 

  33. Wanidworanun C, Strober W (1993) Predominant role of tumor necrosis factor-alpha in human monocyte IL-10 synthesis. J Immunol 151:6853–6861

    PubMed  CAS  Google Scholar 

  34. Wilkinson PC, Newman I (1992) Identification of IL-8 as a locomotor attractant for activated human lymphocytes in mononuclear cell cultures with anti-CD3 or purified protein derivative of Mycobacterium tuberculosis. J Immunol 149:2689–2694

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by grants-in-aid for health care research from Iwate prefecture, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masataka Takamiya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takamiya, M., Fujita, S., Saigusa, K. et al. Simultaneous detection of eight cytokines in human dermal wounds with a multiplex bead-based immunoassay for wound age estimation. Int J Legal Med 122, 143–148 (2008). https://doi.org/10.1007/s00414-007-0183-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-007-0183-5

Keywords

Navigation