Skip to main content

Advertisement

Log in

Extended characterization of IL-33/ST2 as a predictor for wound age determination in skin wound tissue samples of humans and mice

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Interleukin (IL)-33, an important inflammatory cytokine, is highly expressed in skin wound tissue and serum of humans and mice, and plays an essential role in the process of skin wound healing (SWH) dependent on the IL-33/suppression of tumorigenicity 2 (ST2) pathway. However, whether IL-33 and ST2 themselves, as well as their interaction, can be applied for skin wound age determination in forensic practice remains incompletely characterized. Human skin samples with injured intervals of a few minutes to 24 hours (hs) and mouse skin samples with injured intervals of 1 h to 14 days (ds) were collected. Herein, the results demonstrated that IL-33 and ST2 are increased in the human skin wounds, and that in mice skin wounds, there is an increase over time, with IL-33 expression peaking at 24 hs and 10 ds, and ST2 expression peaking at 12 hs and 7 ds. Notably, the relative quantity of IL-33 and ST2 proteins < 0.35 suggested a wound age of 3 hs; their relative quantity > 1.0 suggested a wound age of 24 hs post-mouse skin wounds. In addition, immunofluorescent staining results showed that IL-33 and ST2 were consistently expressed in the cytoplasm of F4/80-positive macrophages and CD31-positive vascular endothelial cells with or without skin wounds, whereas nuclear localization of IL-33 was absent in α-SMA-positive myofibroblasts with skin wounds. Interestingly, IL-33 administration facilitated the wound area closure by increasing the proliferation of cytokeratin (K) 14 -positive keratinocytes and vimentin-positive fibroblasts. In contrast, treating with its antagonist (i.e., anti-IL-33) or receptor antagonist (e.g., anti-ST2) exacerbated the aforementioned pathological changes. Moreover, treatment with IL-33 combined with anti-IL-33 or anti-ST2 reversed the effect of IL-33 on facilitating skin wound closure, suggesting that IL-33 administration facilitated skin wound closure through the IL-33/ST2 signaling pathway. Collectively, these findings indicate that the detection of IL-33/ST2 might be a reliable biomarker for the determination of skin wound age in forensic practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in Figs. 1–5. Additional data sets that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Kim TH, Jeon WY, Ji Y et al (2021) Electricity auto-generating skin patch promotes wound healing process by activation of mechanosensitive ion channels. Biomaterials 275:120948. https://doi.org/10.1016/j.biomaterials.2021.120948

    Article  CAS  PubMed  Google Scholar 

  2. Zhu W, Zhai X, Jia Z, Wang Y, Mo Y (2022) Bioinformatics analysis of sequential gene expression profiling after skin and skeletal muscle wound in mice. Leg Med (Tokyo) 54:101982. https://doi.org/10.1016/j.legalmed.2021.101982

    Article  CAS  PubMed  Google Scholar 

  3. Peyron PA, Colomb S, Becas D et al (2021) Cytokines as new biomarkers of skin wound vitality. Int J Legal Med 135:2537–2545. https://doi.org/10.1007/s00414-021-02659-z

    Article  PubMed  Google Scholar 

  4. Kuninaka Y, Ishida Y, Nosaka M et al (2020) Forensic pathological study on temporal appearance of dendritic cells in skin wounds. Int J Legal Med 134:597–601. https://doi.org/10.1007/s00414-019-02185-z

    Article  PubMed  Google Scholar 

  5. Grellner W (2002) Time-dependent immunohistochemical detection of proinflammatory cytokines (IL-1beta, IL-6, TNF-alpha) in human skin wounds. Forensic Sci Int 130:90–96. https://doi.org/10.1016/s0379-0738(02)00342-0

    Article  CAS  PubMed  Google Scholar 

  6. Dewan MC, Rattani A, Gupta S et al (2018) Estimating the global incidence of traumatic brain injury. J Neurosurg 130(4):1080–1097. https://doi.org/10.3171/2017.10.JNS17352

    Article  Google Scholar 

  7. Niedecker A, Huhn R, Ritz-Timme S, Mayer F (2021) Complex challenges of estimating the age and vitality of muscle wounds: a study with matrix metalloproteinases and their inhibitors on animal and human tissue samples. Int J Legal Med 135:1843–1853. https://doi.org/10.1007/s00414-021-02563-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Birincioğlu İ, Akbaba M, Alver A et al (2016) Determination of skin wound age by using cytokines as potential markers. J Forensic Leg Med 44:14–19. https://doi.org/10.1016/j.jflm.2016.08.011

    Article  PubMed  Google Scholar 

  9. Kondo T, Ohshima T (1996) The dynamics of inflammatory cytokines in the healing process of mouse skin wound: a preliminary study for possible wound age determination. Int J Legal Med 108:231–236. https://doi.org/10.1007/BF01369816

    Article  CAS  PubMed  Google Scholar 

  10. Wang Y, Yamamoto Y, Kuninaka Y, Kondo T, Furukawa F (2015) Forensic Potential of MMPs and CC Chemokines for Wound Age Determination. J Forensic Sci 60:1511–1515. https://doi.org/10.1111/1556-4029.12831

    Article  CAS  PubMed  Google Scholar 

  11. Lefrancais E, Roga S, Gautier V et al (2012) IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G. Proc Natl Acad Sci USA 109:1673–1678. https://doi.org/10.1073/pnas.1115884109

    Article  PubMed  PubMed Central  Google Scholar 

  12. Schmitz J, Owyang A, Oldham E et al (2005) IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23:479–490. https://doi.org/10.1016/j.immuni.2005.09.015

    Article  CAS  PubMed  Google Scholar 

  13. Perez F, Ruera CN, Miculan E et al (2020) IL-33 Alarmin and Its Active Proinflammatory Fragments Are Released in Small Intestine in Celiac Disease. Front Immunol 11:581445. https://doi.org/10.3389/fimmu.2020.581445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Imai Y, Yasuda K, Sakaguchi Y et al (2013) Skin-specific expression of IL-33 activates group 2 innate lymphoid cells and elicits atopic dermatitis-like inflammation in mice. Proc Natl Acad Sci USA 110:13921–13926. https://doi.org/10.1073/pnas.1307321110

    Article  PubMed  PubMed Central  Google Scholar 

  15. Taniguchi S, Elhance A, Van Duzer A, Kumar S, Leitenberger JJ, Oshimori N (2020) Tumor-initiating cells establish an IL-33-TGF-β niche signaling loop to promote cancer progression. Science 369(6501):eaay1813. https://doi.org/10.1126/science.aay1813

    Article  CAS  PubMed  Google Scholar 

  16. Oshio T, Komine M, Tsuda H et al (2017) Nuclear expression of IL-33 in epidermal keratinocytes promotes wound healing in mice. J Dermatol Sci 85:106–114. https://doi.org/10.1016/j.jdermsci.2016.10.008

    Article  CAS  PubMed  Google Scholar 

  17. Liew FY (2012) IL-33: a Janus cytokine. Ann Rheum Dis 71(Suppl 2):i101–i104. https://doi.org/10.1136/annrheumdis-2011-200589

    Article  CAS  PubMed  Google Scholar 

  18. Komi DEA, Khomtchouk K, Santa Maria PL (2020) A Review of the Contribution of Mast Cells in Wound Healing: Involved Molecular and Cellular Mechanisms. Clin Rev Allergy Immunol 58:298–312. https://doi.org/10.1007/s12016-019-08729-w

    Article  CAS  PubMed  Google Scholar 

  19. Cannavo SP, Bertino L, Di Salvo E, Papaianni V, Ventura-Spagnolo E, Gangemi S (2019) Possible Roles of IL-33 in the Innate-Adaptive Immune Crosstalk of Psoriasis Pathogenesis. Mediators Inflamm 2019:7158014. https://doi.org/10.1155/2019/7158014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dagher R, Copenhaver AM, Besnard V et al (2020) IL-33-ST2 axis regulates myeloid cell differentiation and activation enabling effective club cell regeneration. Nat Commun 11:4786. https://doi.org/10.1038/s41467-020-18466-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gao Y, Luo C, Rui T et al (2021) Autophagy inhibition facilitates wound closure partially dependent on the YAP/IL-33 signaling in a mouse model of skin wound healing. Faseb J 35:e21920. https://doi.org/10.1096/fj.202002623RRR

    Article  CAS  PubMed  Google Scholar 

  22. Gao Y, Zhang MY, Wang T et al (2018) IL-33/ST2L Signaling Provides Neuroprotection Through Inhibiting Autophagy, Endoplasmic Reticulum Stress, and Apoptosis in a Mouse Model of Traumatic Brain Injury. Front Cell Neurosci 12:95. https://doi.org/10.3389/fncel.2018.00095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li X, Liu C, Zhu Y et al (2021) SETD2 epidermal deficiency promotes cutaneous wound healing via activation of AKT/mTOR Signalling. Cell Prolif 54:e13045. https://doi.org/10.1111/cpr.13045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kondo A, Shahpasand K, Mannix R et al (2015) Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy. Nature 523:431–436. https://doi.org/10.1038/nature14658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gao Y, Wang T, Cheng Y et al (2023) Melatonin ameliorates neurological deficits through MT2/IL-33/ferritin H signaling-mediated inhibition of neuroinflammation and ferroptosis after traumatic brain injury. Free Radic Biol Med 199:97–112. https://doi.org/10.1016/j.freeradbiomed.2023.02.014

    Article  CAS  PubMed  Google Scholar 

  26. Cheng Y, Gao Y, Li J et al (2023) TrkB agonist N-acetyl serotonin promotes functional recovery after traumatic brain injury by suppressing ferroptosis via the PI3K/Akt/Nrf2/Ferritin H pathway. Free Radic Biol Med 194:184–198. https://doi.org/10.1016/j.freeradbiomed.2022.12.002

    Article  CAS  PubMed  Google Scholar 

  27. Ma WX, Yu TS, Fan YY et al (2011) Time-dependent expression and distribution of monoacylglycerol lipase during the skin-incised wound healing in mice. Int J Legal Med 125:549–558. https://doi.org/10.1007/s00414-011-0567-4

    Article  PubMed  Google Scholar 

  28. Ishida Y, Kimura A, Takayasu T, Eisenmenger W, Kondo T (2008) Expression of oxygen-regulated protein 150 (ORP150) in skin wound healing and its application for wound age determination. Int J Legal Med 122:409–414. https://doi.org/10.1007/s00414-008-0255-1

    Article  CAS  PubMed  Google Scholar 

  29. Gu S, Dai H, Zhao X, Gui C, Gui J (2020) AKT3 deficiency in M2 macrophages impairs cutaneous wound healing by disrupting tissue remodeling. Aging (Albany NY) 12:6928–6946. https://doi.org/10.18632/aging.103051

    Article  CAS  PubMed  Google Scholar 

  30. Foster DS, Januszyk M, Yost KE et al (2021) Integrated spatial multiomics reveals fibroblast fate during tissue repair. Proc Natl Acad Sci USA 118:e2110025118. https://doi.org/10.1073/pnas.2110025118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shpichka A, Butnaru D, Bezrukov EA et al (2019) Skin tissue regeneration for burn injury. Stem Cell Res Ther 10:94. https://doi.org/10.1186/s13287-019-1203-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yu Q, Dai Q, Huang Z et al (2023) Microfat exerts an anti-fibrotic effect on human hypertrophic scar via fetuin-A/ETV4 axis. J Transl Med 21:231. https://doi.org/10.1186/s12967-023-04065-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang Y, Feng Q, Li Z, Bai X, Wu Y, Liu Y (2020) Evaluating the Effect of Integra Seeded with Adipose Tissue-Derived Stem Cells or Fibroblasts in Wound Healing. Curr Drug Deliv 17:629–635. https://doi.org/10.2174/1567201817666200512104004

    Article  CAS  PubMed  Google Scholar 

  34. Liew FY, Girard JP, Turnquist HR (2016) Interleukin-33 in health and disease. Nat Rev Immunol 16:676–689. https://doi.org/10.1038/nri.2016.95

    Article  CAS  PubMed  Google Scholar 

  35. Toki S, Goleniewska K, Zhang J et al (2020) TSLP and IL-33 reciprocally promote each other's lung protein expression and ILC2 receptor expression to enhance innate type-2 airway inflammation. Allergy 75:1606–1617. https://doi.org/10.1111/all.14196

    Article  CAS  PubMed  Google Scholar 

  36. Drake LY, Squillace D, Iijima K et al (2019) Early Life Represents a Vulnerable Time Window for IL-33-Induced Peripheral Lung Pathology. J Immunol 203:1952–1960. https://doi.org/10.4049/jimmunol.1900454

    Article  CAS  PubMed  Google Scholar 

  37. Du L, Hu X, Yang W et al (2019) Spinal IL-33/ST2 signaling mediates chronic itch in mice through the astrocytic JAK2-STAT3 cascade. Glia 67:1680–1693. https://doi.org/10.1002/glia.23639

    Article  PubMed  Google Scholar 

  38. Wulff BC, Pappa NK, Wilgus TA (2019) Interleukin-33 encourages scar formation in murine fetal skin wounds. Wound Repair Regen 27:19–28. https://doi.org/10.1111/wrr.12687

    Article  PubMed  Google Scholar 

  39. Rak GD, Osborne LC, Siracusa MC et al (2016) IL-33-Dependent Group 2 Innate Lymphoid Cells Promote Cutaneous Wound Healing. J Invest Dermatol 136:487–496. https://doi.org/10.1038/jid.2015.406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pi L, Fang B, Meng X, Qian L (2022) LncRNA XIST accelerates burn wound healing by promoting M2 macrophage polarization through targeting IL-33 via miR-19b. Cell Death Discov 8:220. https://doi.org/10.1038/s41420-022-00990-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. He R, Yin H, Yuan B et al (2017) IL-33 improves wound healing through enhanced M2 macrophage polarization in diabetic mice. Mol Immunol 90:42–49. https://doi.org/10.1016/j.molimm.2017.06.249

    Article  CAS  PubMed  Google Scholar 

  42. Yin H, Li X, Hu S et al (2013) IL-33 accelerates cutaneous wound healing involved in upregulation of alternatively activated macrophages. Mol Immunol 56:347–353. https://doi.org/10.1016/j.molimm.2013.05.225

    Article  CAS  PubMed  Google Scholar 

  43. Yin H, Li X, Hu S et al (2013) IL-33 promotes Staphylococcus aureus-infected wound healing in mice. Int Immunopharmacol 17:432–438. https://doi.org/10.1016/j.intimp.2013.07.008

    Article  CAS  PubMed  Google Scholar 

  44. Xiao Y, Peng J, Liu Q et al (2020) Ultrasmall CuS@BSA nanoparticles with mild photothermal conversion synergistically induce MSCs-differentiated fibroblast and improve skin regeneration. Theranostics 10:1500–1513. https://doi.org/10.7150/thno.39471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Crompton RA, Williams H, Campbell L et al (2022) An Epidermal-Specific Role for Arginase1 during Cutaneous Wound Repair. J Invest Dermatol 142:1206–16.e8. https://doi.org/10.1016/j.jid.2021.09.009

    Article  CAS  PubMed  Google Scholar 

  46. Lee J, Jang H, Park S et al (2019) Platelet-rich plasma activates AKT signaling to promote wound healing in a mouse model of radiation-induced skin injury. J Transl Med 17:295. https://doi.org/10.1186/s12967-019-2044-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453:314–321. https://doi.org/10.1038/nature07039

    Article  CAS  PubMed  Google Scholar 

  48. Li H, Han X, Zuo K et al (2018) miR-23b promotes cutaneous wound healing through inhibition of the inflammatory responses by targeting ASK1. Acta Biochim Biophys Sin (Shanghai) 50:1104–1113. https://doi.org/10.1093/abbs/gmy109

    Article  CAS  PubMed  Google Scholar 

  49. Altara R, Ghali R, Mallat Z, Cataliotti A, Booz GW, Zouein FA (2018) Conflicting vascular and metabolic impact of the IL-33/sST2 axis. Cardiovasc Res 114:1578–1594. https://doi.org/10.1093/cvr/cvy166

    Article  CAS  PubMed  Google Scholar 

  50. Küchler AM, Pollheimer J, Balogh J et al (2008) Nuclear interleukin-33 is generally expressed in resting endothelium but rapidly lost upon angiogenic or proinflammatory activation. Am J Pathol 173:1229–1242. https://doi.org/10.2353/ajpath.2008.080014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cayrol C, Girard JP (2009) The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1. Proc Natl Acad Sci USA 106:9021–9026. https://doi.org/10.1073/pnas.0812690106

    Article  PubMed  PubMed Central  Google Scholar 

  52. Betz P, Nerlich A, Wilske J, Tubel J, Penning R, Eisenmenger W (1992) Time-dependent appearance of myofibroblasts in granulation tissue of human skin wounds. Int J Legal Med 105:99–103. https://doi.org/10.1007/BF02340832

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (82101972, 81530062, 81971800, 81971163, 82001382, and 82271409), Jiangsu Provincial Natural Science Foundation of China (SBK2020040785), Suzhou Municipal Science and Technology Bureau (SYS2019027), China Postdoctoral Science Foundation (2020M681723), Undergraduate Training Program for Innovation and Entrepreneurship, Soochow University (202110285044Z), a project of invigorating healthcare through science, technology, and education (KJXW2019018), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

Yuan Gao, Luwei Cai, Ziguang Lei, and Luwen Zhu established the SWH model, and carried out molecular biology experiments; Yuan Gao, Chengliang Luo, and Luyang Tao analyzed the data and wrote the manuscript. Tao Wang, Dongya Li, Youzhuang Wu, and Hen Xu helped collect tissue samples. Yulu Wu, Wenjing Ren, Yirui Song, Dongya Li, and Lili Li participated in data interpretation. Yuan Gao and Chengliang Luo reviewed and edited the manuscript. All authors have contributed significantly to the design of this experiment, participated in the drafting and rigorous review of this manuscript, and endorsed its final version.

Corresponding authors

Correspondence to Ziguang Lei or Luyang Tao.

Ethics declarations

Research involving human participants and/or animals

The skin wound tissues of humans and mice involved in this study were obtained with the approval of the Ethics Committee of Soochow University and the Forensic Center of Soochow University.

Informed consent

Informed consent was obtained from all individual participants included in the study and/ or from legal representatives.

Ethical Approval

Ethical approval has been obtained from the Ethics Committee of Soochow University for animal experimentation and human Samples.

Conflicts of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yuan Gao, Luwei Cai and Dongya Li contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Cai, L., Li, D. et al. Extended characterization of IL-33/ST2 as a predictor for wound age determination in skin wound tissue samples of humans and mice. Int J Legal Med 137, 1287–1299 (2023). https://doi.org/10.1007/s00414-023-03025-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-023-03025-x

Keywords

Navigation