Skip to main content

Advertisement

Log in

Forensic application of VEGF expression to skin wound age determination

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

An immunohistochemical study combined with morphometry was carried out to examine the time-dependent expression of vascular endothelial growth factor (VEGF) using 53 human skin wounds with different wound ages (groups I: 0–12 h, II: 1–4 days, III: 7–14 days and IV: 17–21 days). In the human wound specimens aged 4–12 h, neutrophils recruited at the wound showed no positive signals for VEGF. With an increase in wound ages of ≥7 days, granulation tissue and angiogenesis were observed, with the migration of macrophages and fibroblasts of which the cytoplasm expressed VEGF-positive reactions. Morphometrically, the average VEGF-positive ratio was highest in group III, followed by that of group IV. In groups III and IV, 13 out of 26 wound samples had VEGF-positive ratios of more than 50%. However, all of the wound samples in groups I and II showed VEGF-positive ratios of less than 50%. With regard to the practical applicability and forensic validity, these observations suggest that a VEGF-positive ratio of more than 50% possibly indicates a wound age of 7 days or more.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a
Fig. 4a-b
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Martin P (1997) Wound healing—aiming for perfect skin regeneration. Science 276:75–81

    Article  CAS  PubMed  Google Scholar 

  2. Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341:738–746

    Article  CAS  PubMed  Google Scholar 

  3. Raekallio J (1972) Determination of the age of wounds by histochemical and biochemical methods. Forensic Sci Int 1:3–16

    Article  CAS  Google Scholar 

  4. Laiho K (1998) Myeloperoxidase activity in skin lesions. I. Influence of the loss of blood, depth of excoriation and thickness of the skin. Int J Legal Med 111:6–9

    Article  CAS  PubMed  Google Scholar 

  5. Laiho K (1998) Myeloperoxidase activity in skin lesions. II. Influence of alcohol and some medicines. Int J Legal Med 111:10–12

    Article  CAS  PubMed  Google Scholar 

  6. Eisenmenger W, Nerlich A, Glück G (1988) Die Bedeutung des Kollagens bei Wundaltersbestimmung. Z Rechtsmed 100:79–100

    CAS  PubMed  Google Scholar 

  7. Oehmichen M (1990) Die Wundheilung. Springer, Berlin Heidelberg New York, pp 5–67

  8. Oehmichen M, Cröpelin A (1995) Temporal course of intravital and postmortem proliferation of epidermal cells after injury—an immunohistochemical study using bromodeoxyuridine in rats. Int J Legal Med 107:257–262

    CAS  PubMed  Google Scholar 

  9. Betz P (1994) Histological and enzyme histochemical parameters for the age estimation of human skin wounds. Int J Legal Med 107:60–68

    CAS  PubMed  Google Scholar 

  10. Dressler J, Busuttil A, Koch R, Harrison DJ (2001) Sequence of melanocyte migration into human scar tissue. Int J Legal Med 115:61–63

    Article  CAS  PubMed  Google Scholar 

  11. Betz P, Nerlich A, Wilske J, Tübel J, Wiest I, Penning R, Eisenmenger W (1992) Immunohistochemical localization of fibronectin as a tool for the age determination of human skin wounds. Int J Legal Med 105:21–26

    CAS  PubMed  Google Scholar 

  12. Betz P, Nerlich A, Wilske J, Tübel J, Penning R, Eisenmenger W (1993) Analysis of the immunohistochemical localization of collagen type III and V for the time-estimation of human skin wounds. Int J Legal Med 105:329–332

    CAS  PubMed  Google Scholar 

  13. Betz P, Nerlich A, Wilske J, Tübel J, Penning R, Eisenmenger W (1993) Immunohistochemical localization of collagen types I and VI in human skin wounds. Int J Legal Med 106:31–34

    CAS  PubMed  Google Scholar 

  14. Betz P (1994) Histological and enzyme histochemical parameters for the age estimation of human skin wounds. Int J Legal Med 107:60–68

    CAS  PubMed  Google Scholar 

  15. Betz P, Nerlich A, Tübel J, Wiest I, Hausmann R (1997) Detection of cell death in human skin wounds of various ages by an in situ end labeling of nuclear DNA fragments. Int J Legal Med 110:240–243

    Article  CAS  PubMed  Google Scholar 

  16. Dreßler J, Bachmann L, Kasper M, Hauck JG, Müller E (1997) Time dependence of the expression ICAM (CD-54) in human skin wound. Int J Legal Med 110:299–304

    Article  PubMed  Google Scholar 

  17. Dreßler J, Bachmann L, Koch R, Müller E (1998) Enhanced expression of selectins in human skin wounds. Int J Legal Med112:39–44

    Google Scholar 

  18. Dreßler J, Bachmann L, Koch R, Müller E (1999) Estimation of wound age and VCAM-1 in human skin. Int J Legal Med 112:159–162

    Article  PubMed  Google Scholar 

  19. Kondo T, Ohshima T (1996) The dynamics of inflammatory cytokines in the healing process mouse skin wound: a preliminary study for possible wound age determination. Int J Legal Med 108:231–236

    CAS  PubMed  Google Scholar 

  20. Kondo T, Ohshima T, Eisenmenger W (1999) Immunohistochemical and morphometrical study on the temporal expression of interleukin-1α (IL-1α) in human skin wounds for forensic wound age determination. Int J Legal Med 112:249–252

    Article  CAS  PubMed  Google Scholar 

  21. Kondo T, Ohshima T, Mori R, Guan DW, Ohshima K, Eisenmenger W (2002) Immunohistochemical detection of chemokines in human skin wounds and its application to wound age determination. Int J Legal Med 116:87–91

    Article  CAS  PubMed  Google Scholar 

  22. Ohshima T, Sato Y (1998) Time-dependent expression of interleukin-10 (IL-10) mRNA during the early phase of skin wound healing as possible indicator of wound vitality. Int J Legal Med 111:251–255

    Article  CAS  PubMed  Google Scholar 

  23. Guan D, Ohshima T, Kondo T (2000) Immunohistochemical study on Fas and Fas ligand in skin wound healing. Histochem J 32:85–91

    Article  CAS  PubMed  Google Scholar 

  24. Sato Y, Ohshima T (2000) The expression of mRNA by proinflammatory cytokines during skin wound healing in mice: a preliminary study for forensic wound age estimation (II). Int J Legal Med 113:140–145

    Article  CAS  PubMed  Google Scholar 

  25. Rebolledo Godoy M, Rebolledo Godoy AP, Oehmichen M (2000) AgNORs during the process of wound healing. Time dependency as evaluated in vital and postmortem biopsy. Int J Legal Med 113:244–246

    Article  PubMed  Google Scholar 

  26. Kondo T, Tanaka J, Ishida Y, Mori R, Takayasu T, Ohshima T (2002) Ubiquitin expression in skin wounds and its application to forensic wound age determination. Int J Legal Med 116:267–272

    Article  CAS  PubMed  Google Scholar 

  27. Hausmann R, Betz P (2001) Course of glial immunoreactivity for vimentin, tenascin and alpha1-antichymotrypsin after traumatic injury to human brain. Int J Legal Med 114:338–342

    Article  CAS  PubMed  Google Scholar 

  28. Hausmann R, Betz P (2000) The time course of the vascular response to human brain injury—an immunohistochemical study. Int J Legal Med 113:288–292

    Article  CAS  PubMed  Google Scholar 

  29. Hausmann R, Riess R, Fieguth A, Betz P (2000) Immunohistochemical investigations on the course of astroglial GFAP expression following human brain injury. Int J Legal Med 113:70–75

    Article  CAS  PubMed  Google Scholar 

  30. Hausmann R, Kaiser A, Lang C, Bohnert M, Betz P (1999) A quantitative immunohistochemical study on the time-dependent course of acute inflammatory cellular response to human brain injury. Int J Legal Med 112:227–232

    Article  CAS  PubMed  Google Scholar 

  31. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309

    CAS  PubMed  Google Scholar 

  32. Ferrara N, Henzel WJ (1989) Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 161:851–858

    CAS  PubMed  Google Scholar 

  33. Burke B, Giannoudis A, Corke KP, Gill D, Wells M, Ziegler-Heitbrock L, Lewis CE (2003) Hypoxia-induced gene expression in human macrophages: implications for ischemic tissues and hypoxia-regulated gene therapy. Am J Pathol 163:1233–1243

    CAS  PubMed  Google Scholar 

  34. Ishida Y, Kondo T, Takayasu T, Iwakura Y, Mukaida N (2004) The essential involvement of cross-talk between IFN-gamma and TGF-beta in the skin wound-healing process. J Immunol 172:1848–1855

    CAS  PubMed  Google Scholar 

  35. Lin ZQ, Kondo T, Ishida Y, Takayasu T, Mukaida N (2003) Essential involvement of IL-6 in the skin wound-healing process as evidenced by delayed wound healing in IL-6-deficient mice. J Leukoc Biol 73:713–721

    Article  CAS  PubMed  Google Scholar 

  36. Mori R, Kondo T, Ohshima T, Ishida Y, Mukaida N (2002) Accelerated wound healing in tumor necrosis factor receptor p55-deficient mice with reduced leukocyte infiltration. FASEB J 16:963–974

    Article  CAS  PubMed  Google Scholar 

  37. Ishida Y, Kondo T, Tsuneyama K, Lu P, Takayasu T, Mukaida N (2004) The pathogenic roles of tumor necrosis factor receptor p55 in acetaminophen-induced liver injury in mice. J Leukoc Biol 75:59–67

    Article  CAS  PubMed  Google Scholar 

  38. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13:9–22

    CAS  PubMed  Google Scholar 

  39. Ozawa K, Kondo T, Hori O, Kitao Y, Stern DM, Eisenmenger W, Ogawa S, Ohshima T (2001) Expression of the oxygen-regulated protein ORP150 accelerates wound healing by modulating intracellular VEGF transport. J Clin Invest 108:41–50

    Article  CAS  PubMed  Google Scholar 

  40. Hausmann R, Nerlich A, Betz P (1998) The time-related expression of p53 protein in human skin wounds—a quantitative immunohistochemical analysis. Int J Legal Med 111:169–172

    Article  CAS  PubMed  Google Scholar 

  41. Betz P, Nerlich A, Wilske J, Tübel J, Penning R, Eisenmenger W (1992) Time-dependent appearance of myofibroblasts in granulation tissue of human skin wounds. Int J Legal Med 105:99–103

    CAS  PubMed  Google Scholar 

  42. Takamiya M, Saigusa K, Aoki Y (2002) Immunohistochemical study of basic fibroblast growth factor and vascular endothelial growth factor expression for age determination of cutaneous wounds. Am J Forensic Med Pathol 23:264–267

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by Grants-in-Aid for Encouragement of Young Scientists from the Ministry of Education, Science, Sports and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshikazu Kondo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayashi, T., Ishida, Y., Kimura, A. et al. Forensic application of VEGF expression to skin wound age determination. Int J Legal Med 118, 320–325 (2004). https://doi.org/10.1007/s00414-004-0468-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-004-0468-x

Keywords

Navigation