Skip to main content
Log in

Transcription-dependent radial distribution of TCF7L2 regulated genes in chromosome territories

  • Original Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Human chromosomes occupy distinct territories in the interphase nucleus. Such chromosome territories (CTs) are positioned according to gene density. Gene-rich CTs are generally located in the center of the nucleus, while gene-poor CTs are positioned more towards the nuclear periphery. However, the association between gene expression levels and the radial positioning of genes within the CT is still under debate. In the present study, we performed three-dimensional fluorescence in situ hybridization experiments in the colorectal cancer cell lines DLD-1 and LoVo using whole chromosome painting probes for chromosomes 8 and 11 and BAC clones targeting four genes with different expression levels assessed by gene expression arrays and RT-PCR. Our results confirmed that the two over-expressed genes, MYC on chromosome 8 and CCND1 on chromosome 11, are located significantly further away from the center of the CT compared to under-expressed genes on the same chromosomes, i.e., DLC1 and SCN3B. When CCND1 expression was reduced after silencing the major transcription factor of the WNT/β-catenin signaling pathway, TCF7L2, the gene was repositioned and mostly detected in the interior of the CT. Thus, we suggest a non-random distribution in which over-expressed genes are located more towards the periphery of the respective CTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bickmore WA, van Steensel B (2013) Genome architecture: domain organization of interphase chromosomes. Cell 152:1270–1284

    Article  CAS  PubMed  Google Scholar 

  • Bolte S, Cordelières FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213–232

    Article  CAS  PubMed  Google Scholar 

  • Bolzer A, Kreth G, Solovei I et al (2005) Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol 3:e157

    Article  PubMed  PubMed Central  Google Scholar 

  • Boyle S, Gilchrist S, Bridger JM et al (2001) The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum Mol Genet 10:211–219

    Article  CAS  PubMed  Google Scholar 

  • Camps J, Nguyen QT, Padilla-Nash HM et al (2009) Integrative genomics reveals mechanisms of copy number alterations responsible for transcriptional deregulation in colorectal cancer. Genes Chromosomes Cancer 48:1002–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camps J, Pitt JJ, Emons G et al (2013) Genetic amplification of the NOTCH modulator LNX2 upregulates the WNT/β-catenin pathway in colorectal cancer. Cancer Res 73:2003–2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clemson CM, Hall LL, Byron M et al (2006) The X chromosome is organized into a gene-rich outer rim and an internal core containing silenced nongenic sequences. Proc Natl Acad Sci U S A 103:7688–7693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cremer M, Küpper K, Wagler B et al (2003) Inheritance of gene density-related higher order chromatin arrangements in normal and tumor cell nuclei. J Cell Biol 162:809–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cremer M, von Hase J, Volm T et al (2001) Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosome Res 9:541–567

    Article  CAS  PubMed  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301

    Article  CAS  PubMed  Google Scholar 

  • Cremer T, Cremer M (2010) Chromosome territories. Cold Spring Harb Perspect Biol 2:a003889

    Article  PubMed  PubMed Central  Google Scholar 

  • Cremer T, Cremer M, Dietzel S et al (2006) Chromosome territories—a functional nuclear landscape. Curr Opin Cell Biol 18:307–316

    Article  CAS  PubMed  Google Scholar 

  • Croft JA, Bridger JM, Boyle S et al (1999) Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 145:1119–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dekker J, Heard E (2015) Structural and functional diversity of topologically associating domains. FEBS Lett 589:2877–2884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dietzel S, Schiebel K, Little G et al (1999) The 3D positioning of ANT2 and ANT3 genes within female X chromosome territories correlates with gene activity. Exp Cell Res 252:363–375

    Article  CAS  PubMed  Google Scholar 

  • Dixon JR, Selvaraj S, Yue F et al (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fritz AJ, Barutcu AR, Martin-Buley L et al (2016) Chromosomes at work: organization of chromosome territories in the interphase nucleus. J Cell Biochem 117:9–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerlich D, Beaudouin J, Kalbfuss B et al (2003) Global chromosome positions are transmitted through mitosis in mammalian cells. Cell 112:751–764

    Article  CAS  PubMed  Google Scholar 

  • Gilbert N, Boyle S, Fiegler H et al (2004) Chromatin architecture of the human genome. Cell 118:555–566

    Article  CAS  PubMed  Google Scholar 

  • Gimelbrant A, Hutchinson JN, Thompson BR, Chess A (2007) Widespread monoallelic expression on human autosomes. Science 318:1136–1140

    Article  CAS  PubMed  Google Scholar 

  • Gindin Y, Valenzuela MS, Aladjem MI et al (2014) A chromatin structure-based model accurately predicts DNA replication timing in human cells. Mol Syst Biol 10:722

    Article  PubMed  PubMed Central  Google Scholar 

  • Hatzis P, van der Flier LG, van Driel MA et al (2008) Genome-wide pattern of TCF7L2/TCF4 chromatin occupancy in colorectal cancer cells. Mol Cell Biol 28:2732–2744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ioannou D, Kandukuri L, Simpson JL, Tempest HG (2015) Chromosome territory repositioning induced by PHA-activation of lymphocytes: a 2D and 3D appraisal. Mol Cytogenet 8:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalhor R, Tjong H, Jayathilaka N et al (2012) Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. Nat Biotechnol 30:90–98

    Article  CAS  Google Scholar 

  • Kölbl AC, Weigl D, Mulaw M et al (2012) The radial nuclear positioning of genes correlates with features of megabase-sized chromatin domains. Chromosome Res 20:735–752

    Article  PubMed  Google Scholar 

  • Küpper K, Kölbl A, Biener D et al (2007) Radial chromatin positioning is shaped by local gene density, not by gene expression. Chromosoma 116:285–306

    Article  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 4:402–408

    Article  Google Scholar 

  • Mahy NL, Perry PE, Bickmore WA (2002) Gene density and transcription influence the localization of chromatin outside of chromosome territories detectable by FISH. J Cell Biol 159:753–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer R, Brero A, von Hase J et al (2005) Common themes and cell type specific variations of higher order chromatin arrangements in the mouse. BMC Cell Biol 6:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Meaburn KJ, Misteli T (2008) Locus-specific and activity-independent gene repositioning during early tumorigenesis. J Cell Biol 180:39–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meaburn KJ, Newbold RF, Bridger JM (2008) Positioning of human chromosomes in murine cell hybrids according to synteny. Chromosoma 117:579–591

    Article  PubMed  Google Scholar 

  • Mehta IS, Amira M, Harvey AJ, Bridger JM (2010) Rapid chromosome territory relocation by nuclear motor activity in response to serum removal in primary human fibroblasts. Genome Biol 11:R5

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehta IS, Kulashreshtha M, Chakraborty S et al (2013) Chromosome territories reposition during DNA damage-repair response. Genome Biol 14:R135

    Article  PubMed  PubMed Central  Google Scholar 

  • Mosimann C, Hausmann G, Basler K (2009) Beta-catenin hits chromatin: regulation of Wnt target gene activation. Nat Rev Mol Cell Biol 10:276–286

    Article  CAS  PubMed  Google Scholar 

  • Müller I, Boyle S, Singer RH et al (2010) Stable morphology, but dynamic internal reorganisation, of interphase human chromosomes in living cells. PLoS One 5:e11560

    Article  PubMed  PubMed Central  Google Scholar 

  • Murmann AE, Gao J, Encinosa M et al (2005) Local gene density predicts the spatial position of genetic loci in the interphase nucleus. Exp Cell Res 311:14–26

    Article  CAS  PubMed  Google Scholar 

  • Nagano T, Lubling Y, Stevens TJ et al (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502:59–64

    Article  CAS  PubMed  Google Scholar 

  • Nielsen JA, Hudson LD, Armstrong RC (2002) Nuclear organization in differentiating oligodendrocytes. J Cell Sci 115:4071–4079

    Article  CAS  PubMed  Google Scholar 

  • Ollion J, Cochennec J, Loll F et al (2013) TANGO: a generic tool for high-throughput 3D image analysis for studying nuclear organization. Bioinformatics 29:1840–1841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popken J, Brero A, Koehler D et al (2014) Reprogramming of fibroblast nuclei in cloned bovine embryos involves major structural remodeling with both striking similarities and differences to nuclear phenotypes of in vitro fertilized embryos. Nucleus 5:555–589

    Article  PubMed  PubMed Central  Google Scholar 

  • Ranade D, Koul S, Thompson J et al (2016) Chromosomal aneuploidies induced upon Lamin B2 depletion are mislocalized in the interphase nucleus. Chromosoma. doi:10.1007/s00412-016-0580-y

    PubMed  PubMed Central  Google Scholar 

  • Sehgal N, Fritz AJ, Morris K et al (2014) Gene density and chromosome territory shape. Chromosoma 123:499–513

    Article  PubMed  Google Scholar 

  • Sehgal N, Fritz AJ, Vecerova J et al (2016a) Large-scale probabilistic 3D organization of human chromosome territories. Hum Mol Genet 25:419–436

    Article  CAS  PubMed  Google Scholar 

  • Sehgal N, Seifert B, Ding H et al (2016b) Reorganization of the interchromosomal network during keratinocyte differentiation. Chromosoma 125:389–403

    Article  CAS  PubMed  Google Scholar 

  • Sengupta K, Camps J, Mathews P et al (2008) Position of human chromosomes is conserved in mouse nuclei indicating a species-independent mechanism for maintaining genome organization. Chromosoma 117:499–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sengupta K, Upender MB, Barenboim-Stapleton L et al (2007) Artificially introduced aneuploid chromosomes assume a conserved position in colon cancer cells. PLoS One 2:e199

    Article  PubMed  PubMed Central  Google Scholar 

  • Stadler S, Schnapp V, Mayer R et al (2004) The architecture of chicken chromosome territories changes during differentiation. BMC Cell Biol 5:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Strickfaden H, Zunhammer A, van Koningsbruggen S et al (2010) 4D chromatin dynamics in cycling cells: Theodor Boveri’s hypotheses revisited. Nucleus 1:284–297

    PubMed  PubMed Central  Google Scholar 

  • Sun HB, Shen J, Yokota H (2000) Size-dependent positioning of human chromosomes in interphase nuclei. Biophys J 79:184–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takizawa T, Gudla PR, Guo L et al (2008) Allele-specific nuclear positioning of the monoallelically expressed astrocyte marker GFAP. Genes Dev 22:489–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanabe H, Müller S, Neusser M et al (2002) Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proc Natl Acad Sci U S A 99:4424–4429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volpi EV, Chevret E, Jones T et al (2000) Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J Cell Sci 113:1565–1576

    CAS  PubMed  Google Scholar 

  • Wang S, Su J-H, Beliveau BJ et al (2016) Spatial organization of chromatin domains and compartments in single chromosomes. Science 353:598–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiblin AE, Cui W, Clark AJ, Bickmore WA (2005) Distinctive nuclear organisation of centromeres and regions involved in pluripotency in human embryonic stem cells. J Cell Sci 118:3861–3868

    Article  CAS  PubMed  Google Scholar 

  • Williams RRE, Azuara V, Perry P et al (2006) Neural induction promotes large-scale chromatin reorganisation of the Mash1 locus. J Cell Sci 119:132–140

    Article  CAS  PubMed  Google Scholar 

  • Williams RRE, Broad S, Sheer D, Ragoussis J (2002) Subchromosomal positioning of the epidermal differentiation complex (EDC) in keratinocyte and lymphoblast interphase nuclei. Exp Cell Res 272:163–175

    Article  CAS  PubMed  Google Scholar 

  • Zink D, Amaral MD, Englmann A et al (2004) Transcription-dependent spatial arrangements of CFTR and adjacent genes in human cell nuclei. J Cell Biol 166:815–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Subhadra Banerjee from the Flow Cytometry Core Facility at NCI.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas Ried or Jordi Camps.

Ethics declarations

Funding

This work was supported by grants from the European Commission (COLONGEVA to J.C.), the Instituto de Salud Carlos III and co-funded by the European Regional Development Fund (ERDF) (CP13/00160 to J.C.), the CIBEREHD program, the Agència de Gestió d’Ajuts Universitaris i de Recerca, Generalitat de Catalunya (2014 SGR 135 and 2014 SGR 903), and from the Intramural Research Program of National Institutes of Health/NCI. J.C. has received a travel grant from the Instituto de Salud Carlos III and was co-funded by the European Regional Development Fund (ERDF) to perform experiments at NIH (MV15/00026). K.T. received a PIF fellowship and a mobility grant from the Universitat Autònoma de Barcelona (456-01-02/2013).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Keyvan Torabi, Darawalee Wangsa, and Immaculada Ponsa are co-first authors.

Electronic supplementary material

Table S1

(DOCX 11 kb)

Table S2

(DOCX 12 kb)

Fig. S1

Nuclear radial positioning of chromosome territories. Chromosome territory nuclear radial distribution profiles of a G1-phase and S-phase DLD-1 cells; b G1-phase and S-phase LoVo cells. The Mann-Whitney sum-rank test was used in order to compare CT median radial positioning distributions (n > 50). (GIF 26 kb)

High resolution image (TIFF 29636 kb)

Fig. S2

Gene expression patterns. Gene expression patterns of a,b G-1 phase DLD-1 and LoVo cells and c,d S-phase DLD-1 and LoVo cells. All cases showed an over-expression of MYC and CCND1 compared to DLC1 and SCN3B. Values were normalized by expression levels of the housekeeping gene HPRT1. (GIF 26 kb)

High resolution image (TIFF 35038 kb)

Fig. S3

Positioning of differentially expressed genes within their corresponding CTs in LoVo cells. Boxplots showing radial distances (i.e., eccentricity values) of MYC vs DLC1 and CCND1 vs SCN3B in a G1-phase cells, and b S-phase cells. Histograms and distributions of the distances between the center of the gene and the closest CT border depicted in bins of 0.2 μm are plotted for c G1- and d S-phase cells. Dashed-line at 0 indicates the border of the CT, thus positive values indicate that co-localization of the gene signal and the CT painting probe was lower than 50%. In contrast, negative values indicate that co-localization of the gene signal and the CT painting probe was higher than 50%. Adjusted distributions computed using Kernel density estimator method have been added to the plots. Indicated by arrowheads in the representative examples are loci looping out of the corresponding CT in e G1- and f S-phase. Scale bars correspond to 5 μm. The Wilcoxon test was used to compare median radial measurements between over- and under-expressed genes (n > 50). * corresponds to p < 0.05; ** correspond to p < 0.01, **** correspond to p < 0.0001 and n.s., non significant. (GIF 156 kb)

High resolution image (TIFF 70752 kb)

Fig. S4

Co-localization profiles between gene probes and CTs. Representative maximum projections of pseudoconfocal images stacks of S-phase DLD-1 cells and fluorescence intensity profiles corresponding to the line drawn over the CTs from the previous images of a CT8, MYC and DLC1 FISH panel and b CT11, CCND1 and SCN3B FISH panel. Scale bar corresponds to 5 μm. (GIF 93 kb)

High resolution image (TIFF 30193 kb)

Fig S5

Radial positioning of MYC in CT8 after TCF7L2 silencing. a Boxplot showing MYC radial distances in siTCF7L2 treated cells compared to siNEG and untreated cultures. b Histogram showing the distribution of the distance between MYC and the closest border of CT8 depicted in bins of 0.2 μm of siTCF7L2, siNEG and untreated cells. Adjusted distributions computed using Kernel density estimator method have been added to the plots. Mann-Whitney sum-rank test was used to compare MYC median radial distances between different experiments (untreated, siNEG and siTCF7L2). n.s., non significant. (GIF 29 kb)

High resolution image (TIFF 16500 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torabi, K., Wangsa, D., Ponsa, I. et al. Transcription-dependent radial distribution of TCF7L2 regulated genes in chromosome territories. Chromosoma 126, 655–667 (2017). https://doi.org/10.1007/s00412-017-0629-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-017-0629-6

Keywords

Navigation