Skip to main content
Log in

Positioning of human chromosomes in murine cell hybrids according to synteny

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Chromosomes occupy non-random spatial positions in interphase nuclei. It remains unclear what orchestrates this high level of organisation. To determine how the nuclear environment influences the spatial positioning of chromosomes, we utilised a panel of stable mouse hybrid cell lines carrying a single, intact human chromosome. Eleven of 22 human chromosomes revealed an alternative location in hybrid nuclei compared to that of human fibroblasts, with the majority becoming more internally localised. Human chromosomes in mouse nuclei position according to neither their gene density nor size, but rather the position of human chromosomes in hybrid nuclei appears to mimic that of syntenic mouse chromosomes. These results suggest that chromosomes adopt the behaviour of their host species chromosomes and that the nuclear environment is an important determinant of the interphase positioning of chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson MJ, Stanbridge EJ (1993) Tumor suppressor genes studied by cell hybridization and chromosome transfer. FASEB J 7:826–833

    PubMed  CAS  Google Scholar 

  • Bolzer A, Kreth G, Solovei I, Koehler D, Saracoglu K, Fauth C, Muller S, Eils R, Cremer C, Speicher MR, Cremer T (2005) Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol 3:e157

    Article  PubMed  CAS  Google Scholar 

  • Borden J, Manuelidis L (1988) Movement of the X chromosome in epilepsy. Science 242:1687–1691

    Article  PubMed  CAS  Google Scholar 

  • Boyle S, Gilchrist S, Bridger JM, Mahy NL, Ellis JA, Bickmore WA (2001) The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum Mol Genet 10:211–219

    Article  PubMed  CAS  Google Scholar 

  • Bridger JM, Kill IR, Lichter P (1998) Association of pKi-67 with satellite DNA of the human genome in early G1 cells. Chromosome Res 6:13–24

    Article  PubMed  CAS  Google Scholar 

  • Bridger JM, Boyle S, Kill IR, Bickmore WA (2000) Re-modelling of nuclear architecture in quiescent and senescent human fibroblasts. Curr Biol 10:149–152

    Article  PubMed  CAS  Google Scholar 

  • Bridger JM, Foeger N, Kill IR, Herrmann H (2007) The nuclear lamina—a structural framework involved in genome organisation. FEBS J 274:1354–1361

    Article  PubMed  CAS  Google Scholar 

  • Brown JM, Leach J, Reittie JE, Atzberger A, Lee-Prudhoe J, Wood WG, Higgs DR, Iborra FJ, Buckle VJ (2006) Coregulated human globin genes are frequently in spatial proximity when active. J Cell Biol 172:177–187

    Article  PubMed  CAS  Google Scholar 

  • Cremer M, von Hase J, Volm T, Brero A, Kreth G, Walter J, Fischer C, Solovei I, Cremer C, Cremer T (2001) Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosome Res 9:541–567

    Article  PubMed  CAS  Google Scholar 

  • Cremer M, Kupper K, Wagler B, Wizelman L, Hase Jv J, Weiland Y, Kreja L, Diebold J, Speicher MR, Cremer T (2003) Inheritance of gene density-related higher order chromatin arrangements in normal and tumor cell nuclei. J Cell Biol 162:809–820

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer M, Dietzel S, Muller S, Solovei I, Fakan S (2006) Chromosome territories—a functional nuclear landscape. Curr Opin Cell Biol 18:307–316

    Article  PubMed  CAS  Google Scholar 

  • Croft JA, Bridger JM, Boyle S, Perry P, Teague P, Bickmore WA (1999) Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 145:1119–1131

    Article  PubMed  CAS  Google Scholar 

  • Cuthbert AP, Trott DA, Ekong RM, Jezzard S, England NL, Themis M, Todd CM, Newbold RF (1995) Construction and characterization of a highly stable human: rodent monochromosomal hybrid panel for genetic complementation and genome mapping studies. Cytogenet Cell Genet 71:68–76

    Article  PubMed  CAS  Google Scholar 

  • Doherty AM, Fisher EM (2003) Microcell-mediated chromosome transfer (MMCT): small cells with huge potential. Mamm Genome 14:583–592

    Article  PubMed  Google Scholar 

  • England NL, Cuthbert AP, Trott DA, Jezzard S, Nobori T, Carson DA, Newbold RF (1996) Identification of human tumour suppressor genes by monochromosome transfer: rapid growth-arrest response mapped to 9p21 is mediated solely by the cyclin-D-dependent kinase inhibitor gene, CDKN2A (p16INK4A). Carcinogenesis 17:1567–1575

    Article  PubMed  CAS  Google Scholar 

  • Finlan LE, Sproul D, Thomson I, Boyle S, Kerr E, Perry P, Ylstra B, Chubb JR, Bickmore WA (2008) Recruitment to the nuclear periphery can alter expression of genes in human cells. PLoS genetics 4:e1000039

    Article  PubMed  CAS  Google Scholar 

  • Foster HA, Bridger JM (2005) The genome and the nucleus: a marriage made by evolution. Genome organisation and nuclear architecture. Chromosoma 114:12–229

    Article  Google Scholar 

  • Foster HA, Abeydeera LR, Griffin DK, Bridger JM (2005) Non-random chromosome positioning in mammalian sperm nuclei, with migration of the sex chromosomes during late spermatogenesis. J Cell Sci 118:1811–1820

    Article  PubMed  CAS  Google Scholar 

  • Fournier RE, Ruddle FH (1977) Microcell-mediated transfer of murine chromosomes into mouse, Chinese hamster, and human somatic cells. Proc Natl Acad Sci U S A 74:319–323

    Article  PubMed  CAS  Google Scholar 

  • Fraser P, Bickmore WA (2007) Nuclear organization of the genome and the potential for gene regulation. Nature 447:413–417

    Article  PubMed  CAS  Google Scholar 

  • Gilchrist S, Gilbert N, Perry P, Bickmore WA (2004) Nuclear organization of centromeric domains is not perturbed by inhibition of histone deacetylases. Chromosome Res 12:505–516

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, McQueen PG, Lichtman MK, Shevach EM, Parada LA, Misteli T (2004) Spatial genome organization during T-cell differentiation. Cytogenet Genome Res 105:292–301

    Article  PubMed  CAS  Google Scholar 

  • Koi M, Shimizu M, Morita H, Yamada H, Oshimura M (1989) Construction of mouse A9 clones containing a single human chromosome tagged with neomycin-resistance gene via microcell fusion. Jpn J Cancer Res 80:413–418

    PubMed  CAS  Google Scholar 

  • Kumaran RI, Spector DL (2008) A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence. J Cell Biol 180:51–65

    Article  PubMed  CAS  Google Scholar 

  • Kupper K, Kolbl A, Biener D, Dittrich S, von Hase J, Thormeyer T, Fiegler H, Carter NP, Speicher MR, Cremer T, Cremer M (2007) Radial chromatin positioning is shaped by local gene density, not by gene expression. Chromosoma 116:285–306

    Article  PubMed  Google Scholar 

  • Kuroda M, Tanabe H, Yoshida K, Oikawa K, Saito A, Kiyuna T, Mizusawa H, Mukai K (2004) Alteration of chromosome positioning during adipocyte differentiation. J Cell Sci 117:5897–5903

    Article  PubMed  CAS  Google Scholar 

  • Lanctot C, Cheutin T, Cremer M, Cavalli G, Cremer T (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev 8:104–115

    Article  CAS  Google Scholar 

  • Mahy NL, Perry PE, Bickmore WA (2002a) Gene density and transcription influence the localization of chromatin outside of chromosome territories detectable by FISH. J Cell Biol 159:753–763

    Article  PubMed  CAS  Google Scholar 

  • Mahy NL, Perry PE, Gilchrist S, Baldock RA, Bickmore WA (2002b) Spatial organization of active and inactive genes and noncoding DNA within chromosome territories. J Cell Biol 157:579–589

    Article  PubMed  CAS  Google Scholar 

  • Matarazzo MR, Boyle S, D'Esposito M, Bickmore WA (2007) Chromosome territory reorganization in a human disease with altered DNA methylation. Proc Natl Acad Sci U S A 104:16546–16551

    Article  PubMed  CAS  Google Scholar 

  • Mayer R, Brero A, von Hase J, Schroeder T, Cremer T, Dietzel S (2005) Common themes and cell type specific variations of higher order chromatin arrangements in the mouse. BMC Cell Biol 6:44

    Article  PubMed  CAS  Google Scholar 

  • Meaburn KJ, Misteli T (2007) Cell biology: chromosome territories. Nature 445:379–781

    Article  PubMed  CAS  Google Scholar 

  • Meaburn KJ, Misteli T (2008) Locus-specific and activity-independent gene repositioning during early tumorigenesis. J Cell Biol 180:39–50

    Article  PubMed  CAS  Google Scholar 

  • Meaburn KJ, Levy N, Toniolo D, Bridger JM (2005a) Chromosome positioning is largely unaffected in lymphoblastoid cell lines containing emerin or A-type lamin mutations. Biochem Soc Trans 33:1438–1440

    Article  PubMed  CAS  Google Scholar 

  • Meaburn KJ, Parris CN, Bridger JM (2005b) The manipulation of chromosomes by mankind: the uses of microcell-mediated chromosome transfer. Chromosoma 114:263–274

    Article  PubMed  Google Scholar 

  • Meaburn KJ, Cabuy E, Bonne G, Levy N, Morris GE, Novelli G, Kill IR, Bridger JM (2007a) Primary laminopathy fibroblasts display altered genome organization and apoptosis. Aging cell 6:139–153

    Article  PubMed  CAS  Google Scholar 

  • Meaburn KJ, Misteli T, Soutoglou E (2007b) Spatial genome organization in the formation of chromosomal translocations. Semin Cancer Biol 17:80–90

    Article  PubMed  CAS  Google Scholar 

  • Mehta IS, Figgitt M, Clements CS, Kill IR, Bridger JM (2007) Alterations to Nuclear Architecture and Genome Behaviour in Senescent Cells. Ann NY Acad Sci 1100:250–263

    Article  PubMed  CAS  Google Scholar 

  • Misteli T (2007) Beyond the sequence: cellular organization of genome function. Cell 128:787–800

    Article  PubMed  CAS  Google Scholar 

  • Mora L, Sanchez I, Garcia M, Ponsa M (2006) Chromosome territory positioning of conserved homologous chromosomes in different primate species. Chromosoma 115:367–375

    Article  PubMed  Google Scholar 

  • Murmann AE, Gao J, Encinosa M, Gautier M, Peter ME, Eils R, Lichter P, Rowley JD (2005) Local gene density predicts the spatial position of genetic loci in the interphase nucleus. Exp Cell Res 311:14–26

    Article  PubMed  CAS  Google Scholar 

  • Murphy WJ, Larkin DM, Everts-van der Wind A, Bourque G, Tesler G, Auvil L, Beever JE, Chowdhary BP, Galibert F, Gatzke L, Hitte C, Meyers SN, Milan D, Ostrander EA, Pape G, Parker HG, Raudsepp T, Rogatcheva MB, Schook LB, Skow LC, Welge M, Womack JE, O'Brien SJ, Pevzner PA, Lewin HA (2005) Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 309:613–617

    Article  PubMed  CAS  Google Scholar 

  • Neusser M, Schubel V, Koch A, Cremer T, Muller S (2007) Evolutionarily conserved, cell type and species-specific higher order chromatin arrangements in interphase nuclei of primates. Chromosoma 116:307–320

    Article  PubMed  Google Scholar 

  • Parada L, McQueen P, Misteli T (2004) Tissue-specific spatial organization of genomes. Genome Biol 7:R44

    Article  Google Scholar 

  • Petrova NV, Yakutenko II, Alexeevski AV, Verbovoy VA, Razin SV, Iarovaia OV (2007) Changes in chromosome positioning may contribute to the development of diseases related to X-chromosome aneuploidy. J Cell Physiol 213:278–283

    Article  PubMed  CAS  Google Scholar 

  • Ragoczy T, Telling A, Sawado T, Groudine M, Kosak ST (2003) A genetic analysis of chromosome territory looping: diverse roles for distal regulatory elements. Chromosome Res 11:513–525

    Article  PubMed  CAS  Google Scholar 

  • Reddy KL, Zullo JM, Bertolino E, Singh H (2008) Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature 452:243–247

    Article  PubMed  CAS  Google Scholar 

  • Sadoni N, Langer S, Fauth C, Bernardi G, Cremer T, Turner BM, Zink D (1999) Nuclear organization of mammalian genomes. Polar chromosome territories build up functionally distinct higher order compartments. J Cell Biol 146:1211–1226

    Article  PubMed  CAS  Google Scholar 

  • Sadoni N, Targosz BS, Englmann A, Fesser S, Koch J, Schindelhauer D, Zink D (2008) Transcription-dependent spatial arrangements of CFTR and conserved adjacent loci are not conserved in human and murine nuclei. Chromosoma 117:381–397. doi:10.1007/s00412-008-0157-5

    Article  PubMed  CAS  Google Scholar 

  • Santos AP, Abranches R, Stoger E, Beven A, Viegas W, Shaw PJ (2002) The architecture of interphase chromosomes and gene positioning are altered by changes in DNA methylation and histone acetylation. J Cell Sci 115:4597–4605

    Article  PubMed  CAS  Google Scholar 

  • Schardin M, Cremer T, Hager HD, Lang M (1985) Specific staining of human chromosomes in Chinese hamster x man hybrid cell lines demonstrates interphase chromosome territories. Hum Genet 71:281–287

    Article  PubMed  CAS  Google Scholar 

  • Scheuermann MO, Tajbakhsh J, Kurz A, Saracoglu K, Eils R, Lichter P (2004) Topology of genes and nontranscribed sequences in human interphase nuclei. Exp Cell Res 301:266–27

    Article  PubMed  CAS  Google Scholar 

  • Schor SL, Johnson RT, Mullinger AM (1975) Perturbation of mammalian cell division: II. Studies on the isolation and characterization of human mini segregant cells. J Cell Sci 19:281–303

    PubMed  CAS  Google Scholar 

  • Sengupta K, Upender MB, Barenboim-Stapleton L, Nguyen QT, Wincovitch SM Sr, Garfield SH, Difilippantonio MJ, Ried T (2007) Artificially introduced aneuploid chromosomes assume a conserved position in colon cancer cells. PLoS ONE 2:e199

    Article  PubMed  CAS  Google Scholar 

  • Shaklai S, Amariglio N, Rechavi G, Simon AJ (2007) Gene silencing at the nuclear periphery. FEBS J 274:1383–1392

    Article  PubMed  CAS  Google Scholar 

  • Stadler S, Schnapp V, Mayer R, Stein S, Cremer C, Bonifer C, Cremer T, Dietzel S (2004) The architecture of chicken chromosome territories changes during differentiation. BMC Cell Biol 5:44

    Article  PubMed  CAS  Google Scholar 

  • Sullivan GJ, Bridger JM, Cuthbert AP, Newbold RF, Bickmore WA, McStay B (2001) Human acrocentric chromosomes with transcriptionally silent nucleolar organizer regions associate with nucleoli. EMBO J 20:2867–2874

    Article  PubMed  CAS  Google Scholar 

  • Sun HB, Shen J, Yokota H (2000) Size-dependent positioning of human chromosomes in interphase nuclei. Biophys J 79:184–190

    Article  PubMed  CAS  Google Scholar 

  • Takizawa T, Gudla PR, Guo L, Lockett S, Misteli T (2008) Allele-specific nuclear positioning of the monoallelically expressed astrocyte marker GFAP. Genes Dev 22:489–498

    Article  PubMed  CAS  Google Scholar 

  • Tanabe H, Nakagawa Y, Minegishi D, Hashimoto K, Tanaka N, Oshimura M, Sofuni T, Mizusawa H (2000) Human monochromosome hybrid cell panel characterized by FISH in the JCRB/HSRRB. Chromosome Res 8:319–334

    Article  PubMed  CAS  Google Scholar 

  • Tanabe H, Habermann FA, Solovei I, Cremer M, Cremer T (2002a) Non-random radial arrangements of interphase chromosome territories: evolutionary considerations and functional implications. Mutat Res 504:37–45

    PubMed  CAS  Google Scholar 

  • Tanabe H, Muller S, Neusser M, von Hase J, Calcagno E, Cremer M, Solovei I, Cremer C, Cremer T (2002b) Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proc Natl Acad Sci U S A 99:4424–4429

    Article  PubMed  CAS  Google Scholar 

  • Tanabe H, Kupper K, Ishida T, Neusser M, Mizusawa H (2005) Inter- and intra-specific gene-density-correlated radial chromosome territory arrangements are conserved in Old World monkeys. Cytogenet Genome Res 108:255–261

    Article  PubMed  CAS  Google Scholar 

  • Tindall KR, Glaab WE, Umar A, Risinger JI, Koi M, Barrett JC, Kunkel TA (1998) Complementation of mismatch repair gene defects by chromosome transfer. Mutat Res 402:15–22

    PubMed  CAS  Google Scholar 

  • Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B, Bloom T, Bork P, Botcherby M, Bray N, Brent MR, Brown DG, Brown SD, Bult C, Burton J, Butler J, Campbell RD, Carninci P, Cawley S, Chiaromonte F, Chinwalla AT, Church DM, Clamp M, Clee C, Collins FS, Cook LL, Copley RR, Coulson A, Couronne O, Cuff J, Curwen V, Cutts T, Daly M, David R, Davies J, Delehaunty KD, Deri J, Dermitzakis ET, Dewey C, Dickens NJ, Diekhans M, Dodge S, Dubchak I, Dunn DM, Eddy SR, Elnitski L, Emes RD, Eswara P, Eyras E, Felsenfeld A, Fewell GA, Flicek P, Foley K, Frankel WN, Fulton LA, Fulton RS, Furey TS, Gage D, Gibbs RA, Glusman G, Gnerre S, Goldman N, Goodstadt L, Grafham D, Graves TA, Green ED, Gregory S, Guigo R, Guyer M, Hardison RC, Haussler D, Hayashizaki Y, Hillier LW, Hinrichs A, Hlavina W, Holzer T, Hsu F, Hua A, Hubbard T, Hunt A, Jackson I, Jaffe DB, Johnson LS, Jones M, Jones TA, Joy A, Kamal M, Karlsson EK, Karolchik D, Kasprzyk A, Kawai J, Keibler E, Kells C, Kent WJ, Kirby A, Kolbe DL, Korf I, Kucherlapati RS, Kulbokas EJ, Kulp D, Landers T, Leger JP, Leonard S, Letunic I, Levine R, Li J, Li M, Lloyd C, Lucas S, Ma B, Maglott DR, Mardis ER, Matthews L, Mauceli E, Mayer JH, McCarthy M, McCombie WR, McLaren S, McLay K, McPherson JD, Meldrim J, Meredith B, Mesirov JP, Miller W, Miner TL, Mongin E, Montgomery KT, Morgan M, Mott R, Mullikin JC, Muzny DM, Nash WE, Nelson JO, Nhan MN, Nicol R, Ning Z, Nusbaum C, O'Connor MJ, Okazaki Y, Oliver K, Overton-Larty E, Pachter L, Parra G, Pepin KH, Peterson J, Pevzner P, Plumb R, Pohl CS, Poliakov A, Ponce TC, Ponting CP, Potter S, Quail M, Reymond A, Roe BA, Roskin KM, Rubin EM, Rust AG, Santos R, Sapojnikov V, Schultz B, Schultz J, Schwartz MS, Schwartz S, Scott C, Seaman S, Searle S, Sharpe T, Sheridan A, Shownkeen R, Sims S, Singer JB, Slater G, Smit A, Smith DR, Spencer B, Stabenau A, Stange-Thomann N, Sugnet C, Suyama M, Tesler G, Thompson J, Torrents D, Trevaskis E, Tromp J, Ucla C, Ureta-Vidal A, Vinson JP, Von Niederhausern AC, Wade CM, Wall M, Weber RJ, Weiss RB, Wendl MC, West AP, Wetterstrand K, Wheeler R, Whelan S, Wierzbowski J, Willey D, Williams S, Wilson RK, Winter E, Worley KC, Wyman D, Yang S, Yang SP, Zdobnov EM, Zody MC, Lander ES (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  PubMed  CAS  Google Scholar 

  • Weierich C, Brero A, Stein S, von Hase J, Cremer C, Cremer T, Solovei I (2003) Three-dimensional arrangements of centromeres and telomeres in nuclei of human and murine lymphocytes. Chromosome Res 11:485–502

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Paul Perry and Prof. Wendy Bickmore (MRC HGU, Edinburgh) for use of the erosion analysis script and Mrs. Alison Marriott, Brunel University for providing the initial cell cultures. We are grateful to Dr. Tom Misteli for critical reading of the manuscript and Dr. Ian Kill for helpful suggestions concerning the inception of this project. For help in editing the manuscript we thank Dr. Sara Snyder. This work was supported by awards to JMB from Brunel University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna M. Bridger.

Additional information

Communicated by G. Matera

Electronic Supplementary Material

Below is the link of electronic supplementary material.

ESM Fig. 1

Distribution of human proteins in hybrid nuclei. Indirect immunofluorescence was performed on hybrid nuclei containing HSAs 1, 19 and 13 on which LMNA, LMNB2 or RB1 genes are located, respectively. The antibodies used recognise specifically the human forms of these proteins. Parental A9 and a hybrid cell line lacking the human chromosome containing the gene of interest were used as negative controls and human fibroblasts (HDF) as a positive control (JPG 8.46 MB)

High resolution image file (TIFF 8.46 MB)

ESM Fig. 2

Radial positioning of human chromosomes in hybrid nuclei in the presence or absence of selection antibiotic. A9.2, A9.3, A9.18 and A9.X hybrid cell lines were grown for 3 weeks in the absence of selection antibiotic hygromycin B. After 2D FISH, 50–60 nuclei per chromosome were submitted to erosion analysis. The normalised chromosome signal (mean [% of probe signal/% of DAPI signal]) for each of the five shells was plotted as a histogram. Red bars denote the distribution of the human chromosome in hybrid cells grown in the absence of hygromycin B. Black bars denote hybrid cells grown in the presence of hygromycin B (data from Fig. 2). Error bars show standard error of the mean. The number or letter above a graph denotes the human chromosome represented. No statistical differences were found for any chromosome when grown with or without hygromycin B, as assessed by unpaired, unequal variances, two-tailed Student’s t test at the 95% confidence level (GIF 5.61 MB)

High resolution image file (TIFF 8.46 MB)

ESM Table 1

Expression and distribution of human proteins in hybrid nuclei (DOC 38.0 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meaburn, K.J., Newbold, R.F. & Bridger, J.M. Positioning of human chromosomes in murine cell hybrids according to synteny. Chromosoma 117, 579–591 (2008). https://doi.org/10.1007/s00412-008-0175-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-008-0175-3

Keywords

Navigation