Skip to main content
Log in

The bat genome: GC-biased small chromosomes associated with reduction in genome size

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Bats are distinct from other mammals in their small genome size as well as their high metabolic rate, possibly related to flight ability. Although the genome sequence has been published in two species, the data lack cytogenetic information. In this study, the size and GC content of each chromosome are measured from the flow karyotype of the mouse-eared bat, Myotis myotis (MMY). The smaller chromosomes are GC-rich compared to the larger chromosomes, and the relative proportions of homologous segments between MMY and human differ among the MMY chromosomes. The MMY genome size calculated from the sum of the chromosome sizes is 2.25 Gb, and the total GC content is 42.3 %, compared to human and dog with 41.0 and 41.2 %, respectively. The GC-rich small MMY genome is characterised by GC-biased smaller chromosomes resulting from preferential loss of AT-rich sequences. Although the association between GC-rich small chromosomes and small genome size has been reported only in birds so far, we show in this paper, for the first time, that the same phenomenon is observed in at least one group of mammals, implying that this may be a mechanism common to genome evolution in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ao L, Gu X, Feng Q et al (2006) Karyotype relationships of six bat species (Chiroptera: Vespertilionidae) from China revealed by chromosome painting and G-banding comparison. Cytogenet Genome Res 115:145–153. doi:10.1159/000095235

    Article  PubMed  CAS  Google Scholar 

  • Bickham JW (1979) Banded karyotypes of 11 species of American bats (genus Myotis). Cytologia 44:789–797

    Article  PubMed  CAS  Google Scholar 

  • Burton DW, Bickham JW, Genoways HH (1989) Flow cytometric analyses of nuclear DNA content in four families of neotropical bats. Evolution 43:756–765

    Article  Google Scholar 

  • Dolgin E (2009) Human genomics: the genome finishers. Nature 462:843–845. doi:10.1038/462843a

    Article  PubMed  CAS  Google Scholar 

  • Elhaik E, Landan G, Graur D (2009) Can GC content at third-codon positions be used as a proxy for isochore composition? Mol Biol Evol 26:1829–1833. doi:10.1093/molbev/msp100

    Article  PubMed  CAS  Google Scholar 

  • Ferguson-Smith MA (1997) Genetic analysis by chromosome sorting and painting: phylogenetic and diagnostic applications. Eur J Hum Genet 5:253–265

    PubMed  CAS  Google Scholar 

  • Hughes AL, Hughes MK (1995) Small genomes for better flyers. Nature 377:391

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL, Piontkivska H (2005) DNA repeat arrays in chicken and human genomes and the adaptive evolution of avian genome size. BMC Evol Biol 5:12

    Article  PubMed  Google Scholar 

  • Jensen-Seaman MI, Furey TS, Payseur BA et al (2004) Comparative recombination rates in the rat, mouse, and human genomes. Genome Res 14:528–538. doi:10.1101/gr.1970304

    Article  PubMed  CAS  Google Scholar 

  • Kasai F, O'Brien PC, Ferguson-Smith MA (2012) Reassessment of genome size in turtle and crocodile based on chromosome measurement by flow karyotyping: close similarity to chicken. Biol Lett 23:631–635. doi:10.1098/rsbl.2012.0141

    Article  Google Scholar 

  • Kasai F, O'Brien PC, Ferguson-Smith MA (2013) Afrotheria genome; overestimation of genome size and distinct chromosome GC content revealed by flow karyotyping. Genomics (in press)

  • Kuraku S, Ishijima J, Nishida-Umehara C, Agata K, Kuratani S, Matsuda Y (2006) cDNA-based gene mapping and GC3 profiling in the soft-shelled turtle suggest a chromosomal size-dependent GC bias shared by sauropsids. Chromosome Res 14:187–202. doi:10.1007/s10577-006-1035-8

    Article  PubMed  CAS  Google Scholar 

  • Langford CF, Fischer PE, Binns MM, Holmes NG, Carter NP (1996) Chromosome-specific paints from a high-resolution flow karyotype of the dog. Chromosome Res 4:115–123. doi:10.1007/BF02259704

    Article  PubMed  CAS  Google Scholar 

  • Li W, Holste D (2005) Universal 1/f noise, crossovers of scaling exponents, and chromosome-specific patterns of guanine-cytosine content in DNA sequences of the human genome. Phys Rev E Stat Nonlinear Soft Matter Phys 71:041910. doi:10.1103/PhysRevE.71.041910

    Article  Google Scholar 

  • Lindblad-Toh K, Wade CM, Mikkelsen TS et al (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438:803–819. doi:10.1038/nature01262

    Article  PubMed  CAS  Google Scholar 

  • Meunier J, Duret L (2004) Recombination drives the evolution of GC-content in the human genome. Mol Biol Evol 21:984–990. doi:10.1093/molbev/msh070

    Article  PubMed  CAS  Google Scholar 

  • Mirsky AE, Hans R (1951) The desoxyribonucleic acid content of animal cells and its evolutionary significance. J Gen Physiol 34:451–462

    Article  PubMed  CAS  Google Scholar 

  • Organ CL, Shedlock AM, Meade A, Pagel M, Edwards SV (2007) Origin of avian genome size and structure in non-avian dinosaurs. Nature 446:180–184. doi:10.1038/nature05621

    Article  PubMed  CAS  Google Scholar 

  • Pettigrew JD (1994) Genomic evolution. Flying DNA. Curr Biol 4:277–280. doi:10.1016/S0960-9822(00)00065-8

    Article  PubMed  CAS  Google Scholar 

  • Pieczarka JC, Nagamachi CY, O'Brien PC, Yang F, Rens W, Barros RM, Noronha RC (2005) Reciprocal chromosome painting between two South American bats: Carollia brevicauda and Phyllostomus hastatus (Phyllostomidae, Chiroptera). Chromosome Res 13:339–347. doi:10.1007/s10577-005-2886-0

    Article  PubMed  CAS  Google Scholar 

  • Romiguier J, Ranwez V, Douzery EJ, Galtier N (2010) Contrasting GC-content dynamics across 33 mammalian genomes: relationship with life-history traits and chromosome sizes. Genome Res 20:1001–1009. doi:10.1101/gr.104372.109

    Article  PubMed  CAS  Google Scholar 

  • Smith JD, Gregory TR (2009) The genome sizes of megabats (Chiroptera: Pteropodidae) are remarkably constrained. Biol Lett 5:347–351. doi:10.1098/rsbl.2009.0016

    Article  PubMed  Google Scholar 

  • Tanabe H, Müller S, Neusser M, von Hase J, Calcagno E, Cremer M, Solovei I et al (2002) Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proc Natl Acad Sci U S A 99:4424–4429. doi:10.1073/pnas.072618599

    Article  PubMed  CAS  Google Scholar 

  • Trask B, van den Engh G, Mayall B, Gray JW (1989) Chromosome heteromorphism quantified by high-resolution bivariate flow karyotyping. Am J Hum Genet 45:739–752

    PubMed  CAS  Google Scholar 

  • Van den Bussche RA, Longmire JL, Baker RJ (1995) How bats achieve a small C-value: frequency of repetitive DNA in Macrotus. Mamm Genome 6:521–525. doi:10.1007/BF00356168

    Article  PubMed  Google Scholar 

  • Van Den Bussche RA, Baker RJ, Huelsenbeck JP, Hillis DM (1998) Base compositional bias and phylogenetic analyses: a test of the "flying DNA" hypothesis. Mol Phylogenet Evol 10:408–416. doi:10.1006/mpev.1998.0531

    Article  Google Scholar 

  • Volleth M, Eick G (2012) Chromosome evolution in bats as revealed by FISH: the ongoing search for the ancestral chiropteran karyotype. Cytogenet Genome Res 137:165–173. doi:10.1159/000338929

    Article  PubMed  CAS  Google Scholar 

  • Volleth M, Heller KG, Pfeiffer RA, Hameister H (2002) A comparative ZOO-FISH analysis in bats elucidates the phylogenetic relationships between Megachiroptera and five microchiropteran families. Chromosome Res 10:477–497. doi:10.1023/A:1020992330679

    Article  PubMed  CAS  Google Scholar 

  • Volleth M, Yang F, Müller S (2011) High-resolution chromosome painting reveals the first genetic signature for the chiropteran suborder Pteropodiformes (Mammalia: Chiroptera). Chromosome Res 19:507–519. doi:10.1007/s10577-011-9196-5

    Article  PubMed  CAS  Google Scholar 

  • Zhang G, Cowled C, Shi Z, Huang Z, Bishop-Lilly KA, Fang X, Wynne JW et al (2013) Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science 339:456–460. doi:10.1126/science.1230835

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumio Kasai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasai, F., O’Brien, P.C.M. & Ferguson-Smith, M.A. The bat genome: GC-biased small chromosomes associated with reduction in genome size. Chromosoma 122, 535–540 (2013). https://doi.org/10.1007/s00412-013-0426-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-013-0426-9

Keywords

Navigation