Skip to main content
Log in

Evolutionary characteristics of the mitochondrial NADH dehydrogenase subunit 6 gene in some populations of four sympatric Mustela species (Mustelidae, Mammalia) from central Europe

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Selection on or reticulate evolution of mtDNA is documented in various mammalian taxa and could lead to misleading phylogenetic conclusions if not recognized. We sequenced the MT-ND6 gene of four sympatric Mustelid species of the genus Mustela from some central European populations. We hypothesised positive selection on MT-ND6, given its functional importance and the different body sizes and life histories of the species, even though climatic differences may be unimportant for adaptation in sympatry.

Methods and results

MT-ND6 genes were sequenced in 187 sympatric specimens of weasels, Mustela nivalis, stoats, M. erminea, polecats, M. putorius, and steppe polecats, M. eversmannii, from eastern Austria and of fourteen allopatric polecats from eastern-central Germany. Median joining networks, neighbour joining and maximum likelihood analyses as well as Bayesian inference grouped all species according to earlier published phylogenetic models. However, polecats and steppe polecats, two very closely related species, shared the same two haplotypes. We found only negative selection within the Mustela sequences, including 131 downloaded ones covering thirteen species. Positive selection was observed on three MT-ND6 codons of other mustelid genera retrieved from GenBank.

Conclusions

Negative selection for MT-ND6 within the genus Mustela suggests absence of both environmental and species-specific effects of cellular energy metabolism despite large species-specific differences in body size. The presently found shared polymorphism in European polecats and steppe polecats may result from ancestral polymorphism before speciation and historical or recent introgressive hybridization; it may indicate mtDNA capture of steppe polecats by M. putorius in Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Sequences are deposited in GenBank under accession numbers PP458239 - PP458264. All relevant data is incorporated in the manuscript and supplementary data.

References

  1. Garvin MR, Bielawski JP, Sazanov LA, Gharrett AJ (2014) Review and meta-analysis of natural selection in mitochondrial complex I in metazoans. J Zool Syst Evol Res 53:1–17. https://doi.org/10.1111/jzs.12079

    Article  Google Scholar 

  2. Cahill JA, Green RE, Fulton TL, Stiller M, Jay F, Ovsyanikov N et al (2013) Genomic evidence for Island Population Conversion resolves conflicting theories of Polar Bear Evolution. PLoS Genet 9(3):e1003345. https://doi.org/10.1371/journal.pgen.1003345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Matosiuk M, Sheremetyeva IN, Sheremetyev IS, Saveljev AP, Borkowska A (2014) Evolutionary neutrality of mtDNA introgression: evidence from complete mitogenome analysis in roe deer. J Evol Biol 27:2483–2494. https://doi.org/10.1111/jeb.12491

    Article  CAS  PubMed  Google Scholar 

  4. Melo-Ferreira J, Vilela J, Fonseca MM, da Fonseca RR, Boursot P, Alves PC (2014) The elusive nature of adaptive mitochondrial DNA evolution of an arctic lineage prone to frequent introgression. Genome Biol Evol 6:886–896. https://doi.org/10.1093/gbe/evu059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rubinoff D, Holland BS (2005) Between two extremes: mitochondrial DNA is neither the panacea nor the Nemesis of phylogenetic and taxonomic inference. Syst Biol 54(6):952–961. https://doi.org/10.1080/10635150500234674

    Article  PubMed  Google Scholar 

  6. Alves PC, Ferrand N, Suchentrunk F, Harris DJ (2003) Ancient introgression of Lepus timidus mtDNA into L. granatensis and L. europaeus in the Iberian Peninsula. Mol Phylogenet Evol 27(1):70–80. https://doi.org/10.1016/s1055-7903(02)00417-7

  7. Ben Slimen H, Suchentrunk F, Shahin AB, Ben Ammar Elgaaied A (2007) Phylogenetic analysis of mtCR-1 sequences of Tunisian and Egyptian hares (Lepus sp or spp, Lagomorpha) with different coat colours. Mamm Biol 72:224–239. https://doi.org/10.1016/j.mambio.2006.03.002

    Article  Google Scholar 

  8. Tolesa Z, Bekele E, Tesfaye K et al (2017) Mitochondrial and nuclear DNA reveals reticulate evolution in hares (Lepus spp, Lagomorpha, Mammalia) from Ethiopia. PLoS ONE 12(8):e0180137. https://doi.org/10.1371/journal.pone.0180137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sharma LK, Lu J, Bai Y (2009) Mitochondrial respiratory complex I: structure, function and implication in human diseases. Curr Med Chem 16(10):1266–1277. https://doi.org/10.2174/092986709787846578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kumar S (1996) Patterns of nucleotide substitution in mitochondrial protein coding genes of vertebrates. Genetics 143(1):537–548. https://doi.org/10.1093/genetics/143.1.537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bai Y, Attardi G (1998) The mtDNA-encoded ND6 subunit of mitochondrial NADH dehydrogenase is essential for the assembly of the membrane arm and the respiratory function of the enzyme. EMBO J 17(16):4848–4858. https://doi.org/10.1093/emboj/17.16.4848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yu L, Peng D, Liu J et al (2011) On the phylogeny of Mustelidae subfamilies: analysis of seventeen nuclear non-coding loci and mitochondrial complete genomes. BMC Evol Biol 11:92. https://doi.org/10.1186/1471-2148-11-92

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gu P, Liu W, Yao YF, Ni QY, Zhang MW, Li DY et al (2016) Evidence of adaptive evolution of alpine pheasants to high-altitude environment from mitogenomic perspective. Mitochondrial DNA Part A 27(1):455–462. https://doi.org/10.3109/19401736.2014.900667

    Article  CAS  Google Scholar 

  14. Stefanović M, Djan M, Veličković N et al (2019) Positive selection and precipitation effects on the mitochondrial NADH dehydrogenase subunit 6 gene in brown hares (Lepus europaeus) under a phylogeographic perspective. PLoS ONE 14(11):e0224902. https://doi.org/10.1371/journal.pone.0224902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nowak RM (1999) Walker’s mammals of the world, 6 edn. Johns Hopkins University, Baltimore, MaryLand

    Book  Google Scholar 

  16. Sato JJ, Hosoda T, Wolsan M, Tsuchiya K, Yamamoto Y, Suzuki H (2003) Phylogenetic relationships and divergence times among mustelids (Mammalia: Carnivora) based on nucleotide sequences of the nuclear interphotoreceptor retinoid binding protein and mitochondrial cytochrome b genes. Zool Sci 20:243–264. https://doi.org/10.2108/zsj.20.243

    Article  CAS  Google Scholar 

  17. Koepfli KP, Deere KA, Slater GJ et al (2008) Multigene phylogeny of the Mustelidae: resolving relationships, tempo and biogeographic history of a mammalian adaptive radiation. BMC Biol 6:10. https://doi.org/10.1186/1741-7007-6-10

    Article  PubMed  PubMed Central  Google Scholar 

  18. Marmi J, López-Giráldez J, Domingo-Roura X (2004) Phylogeny, evolutionary history and taxonomy of the Mustelidae based on sequences of the cytochrome b gene and a complex repetitive flanking region. Zool Scri 33:481–499. https://doi.org/10.1111/j.0300-3256.2004.00165.x

    Article  Google Scholar 

  19. Wolsan M (1999) Oldest mephitine cranium and its implications for the origin of skunks. Acta Palaeontol Pol 44:223–230

    Google Scholar 

  20. Wolsan M (2005) Fossil-based minimum divergence dates for the major clades of musteloid carnivorans. In: Abstracts of Plenary, Symposium, Poster and Oral Papers Presented at Ninth International Mammalogical Congress (IMC 9): Roles of Mammalogy on Coexistence of Wild Mammals and Human, July 31–August 5, 2005, Sapporo, Hokkaido, Japan. Science Council of Japan, Tokyo, pp. 372–373

  21. Corbet GB, Hill JE (1991) A World List of Mammalian Species. (third edition). Oxford University Press, London

  22. Hosoda T, Suzuki H, Harada M et al (2000) Evolutionary trends of the mitochondrial lineage differentiation in species of genera Martes and Mustela. Genes Genet Syst 75:259–267. https://doi.org/10.1266/ggs.75.259

    Article  CAS  PubMed  Google Scholar 

  23. Spitzenberger F (2001) Die Säugetierfauna Österreichs. Grüne reihe des BM f. land- und Forstwirtschaft, Umwelt Und Wasserwirtschaft, vol 13. Austria Medien Service GmbH, p 895

  24. Szatmári L, Cserkész T, Laczkó L et al (2021) A comparison of microsatellites and genome-wide SNPs for the detection of admixture brings the first molecular evidence for hybridization between Mustela eversmanii and M. putorius (Mustelidae, Carnivora). Evol Appl 14(9):2986–2304. https://doi.org/10.1111/eva.13291

    Article  CAS  Google Scholar 

  25. Liu J, Yu L, Arnold ML, Wu CH, Wu SF, Lu X, Zhang YP (2011) Reticulate evolution: frequent introgressive hybridization among Chinese hares (genus Lepus) revealed by analyses of multiple mitochondrial and nuclear DNA loci. BMC Evol Biol 11:223. https://doi.org/10.1186/1471-2148-11-223

  26. Melo-Ferreira J, Boursot P, Suchentrunk F, Ferrand N, Alves PC (2005) Invasion from the cold past: extensive introgression of mountain hare (Lepus timidus) mitochondrial DNA into three other hare species in northern Iberia. Mol Ecol 14:2459–2464. https://doi.org/10.1111/j.1365-294X.2005.02599.x

    Article  CAS  PubMed  Google Scholar 

  27. Good JM, Hird S, Reid N, Demboski JR, Steppan SJ, Martin-Nims TR, Sullivan J (2008) Ancient hybridization and mitochondrial capture between two species of chipmunks. Mol Ecol 17:1313–1327. https://doi.org/10.1111/j.1365-294X.2007.03640.x

    Article  CAS  PubMed  Google Scholar 

  28. Runck A, Matocq M, Cook J (2009) Historic hybridization and persistence of a novel mito-nuclear combination in red-backed voles (genus Myodes). BMC Evol Biol 9(1):114. https://doi.org/10.1186/1471-2148-9-114

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nevado B, Koblmüller S, Sturmbauer C, Snoeks J, Usano-Alemany J, Verheyen E (2009) Complete mitochondrial DNA replacement in a Lake Tanganyika cichlid fish. Mol Ecol 18(20):4240–4255. https://doi.org/10.1111/j.1365-294X.2009.04348.x

    Article  CAS  PubMed  Google Scholar 

  30. Abbott R, Albach D, Ansell S et al (2013) Hybridization and speciation. J Evol Biol 26(2):229–246. https://doi.org/10.1111/j.1420-9101.2012.02599.x

    Article  CAS  PubMed  Google Scholar 

  31. Abramov AV (2000) A taxonomic review of the genus Mustela (Mammalia, Carnivora). Zoosystematica Rossica 8: 357–364

  32. Heptner VG, Naumov NP, Yurgenson PB, Sludskiy AA, Chirkova AF, Bannikov AG (1967) Mammals of the Soviet Union. Sea Cows and Carnivora, vol 2. Vyshaya Shkola [in Russian], Moscow

    Google Scholar 

  33. Ternovsky DV, Ternovskaya YG (1994) Ecology of Mustelids. Nauka, Novosibirsk, 222 pp. (in Russian)

  34. Cabria MT, Michaux JR, Gómez-Moliner BJ et al (2011) Bayesian analysis of hybridization and introgression between the endangered European mink (Mustela lutreola) and the polecat (Mustela putorius). Mol Ecol 20(6):1176–1190. https://doi.org/10.1111/j.1365-294X.2010.04988.x

    Article  CAS  PubMed  Google Scholar 

  35. Etherington GJ, Ciezarek A, Shaw R (2022) Extensive genome introgression between domestic ferret and European polecat during population recovery in Great Britain. J Hered 113(5):500–515. https://doi.org/10.1093/jhered/esac038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Marmi J, López-Giráldez JF, Domingo-Roura X (2004) Phylogeny, evolutionary history and taxonomy of the Mustelidae based on sequences of the cytochrome b gene and a complex repetitive flanking region. Zoolog Scr 33(6):481–499

    Article  Google Scholar 

  37. Kurose N, Abramov AV, Masuda R (2008) Molecular phylogeny and taxonomy of the genus Mustela (Mustelidae, Carnivora), inferred from mitochondrial DNA sequences: New perspectives on phylogenetic status of the back-striped weasel and American mink. Mammal Study 33(1):25–33. https://doi.org/10.3106/1348-6160(2008)33[25:MPATOT]2.0.CO;2

    Article  Google Scholar 

  38. Colella JP, Frederick LM, Talbot SL, Cook JA (2021) Extrinsically reinforced hybrid speciation within Holarctic ermine (Mustela spp.) produces an insular endemic. Divers Distrib 27:747–762. https://doi.org/10.1111/ddi.13234

    Article  Google Scholar 

  39. Suchentrunk F, Riedl M, Decker J, Zachos FE (2018) Phenetic, morphological, and genetic discrimination between sympatric European polecats (Mustela putorius) and steppe polecats (M. eversmannii) in Austria. -92nd Annual Meeting German Society of Mammalogy, Sept. 17–20; Bonn, Germany, Book of Abstracts

  40. Labrado P, Rozas J (2009) DNAsp v5. A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. https://doi.org/10.1093/bioinformatics/btp187

    Article  CAS  Google Scholar 

  41. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5, a New Series of Programs to perform Population Genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  Google Scholar 

  42. Tamura K, Stecher G, Kumar S (2021) MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 38:3022–3027. https://doi.org/10.1093/molbev/msab120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tamura K, Kumar S (2002) Evolutionary distance estimation under heterogeneous substitution pattern among lineages. Mol Biol Evol 19:1727–1736. https://doi.org/10.1093/oxfordjournals.molbev.a003995

    Article  CAS  PubMed  Google Scholar 

  44. Holsinger KE, Weir BS (2009) Genetics in geographically structured populations: defining, estimating and interpreting F(ST). Nat Rev Genet 10(9):639–650. https://doi.org/10.1038/nrg2611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wright S (1943) Isolation by distance. Genetics 28:114–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818. https://doi.org/10.1093/bioinformatics/14.9.817

    Article  CAS  PubMed  Google Scholar 

  47. Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version 4. Sinauer Associates, Sunderland

    Google Scholar 

  48. Huelsenbeck JP, Ronquist FR (2001) Mrbayes: bayesian inference of phylogeny. Bioinformatics 17:754–755. https://doi.org/10.1093/bioinformatics/17.8.754

    Article  CAS  PubMed  Google Scholar 

  49. Huelsenbeck JP, Ronquist FR, Nielsen R, Bollback JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294:2310–2314

    Article  CAS  PubMed  Google Scholar 

  50. Bandelt HJ, Forster P, RoÈ hl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37. https://doi.org/10.1093/oxfordjournals.molbev.a026036

    Article  CAS  PubMed  Google Scholar 

  51. Moulton V, Huber KT (2009) Split networks. A tool for exploring complex evolutionary relationships in molecular data. In: Lemey P, Salemi M, Vandamme AM (eds) The phylogenetic handbook. A practical approach to phylogenetic analysis and hypothesis testing. University, Cambridge, UK

    Google Scholar 

  52. Hall BG (2011) Phylogenetic trees made easy. A how-to do manual, 4th edn. Sinauer Assoc., Inc. Publishers Sunderland, Mass. U.S.A., p 282

    Google Scholar 

  53. Morrison DA (2012) Book review: phylogenetics: the theory and practice of phylogenetic systematics. Syst Biol 61:1087–1088. 2nd edn.https://doi.org/10.1093/sysbio/sys065

    Article  Google Scholar 

  54. Kosakovsky PSL, Frost SDW (2005) Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21:2531–2533. https://doi.org/10.1093/bioinformatics/bti320

    Article  CAS  Google Scholar 

  55. Murrell B, Wertheim JO, Moola S, Weighill T, Scheffer K, Kosakovsky PSL (2012) Detecting individual sites subject to episodic diversifying selection. PLoS Genet 8:e1002764. https://doi.org/10.1371/journal.pgen.1002764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Murrell B, Moola S, Mabona A et al (2013) FUBAR: a fast, unconstrained bayesian approximation for inferring selection. Mol Biol Evol 30:1196–1205. https://doi.org/10.1093/molbev/mst030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang Z (2000) Maximum likelihood estimation on large phylogenies and analysis of adaptive evolution in human influenza virus A. J Mol Evol 51:423–432. https://doi.org/10.1007/s002390010105

    Article  CAS  PubMed  Google Scholar 

  58. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591. https://doi.org/10.1093/molbev/msm088

    Article  CAS  PubMed  Google Scholar 

  59. Yang Z, Nielsen R, Goldman N, Pedersen AM (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449. https://doi.org/10.1093/genetics/155.1.431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Choi Y, Sims GE, Murphy S, Miller JR, Chan AP (2012) Predicting the functional effect of amino acid substitutions and indels. PLoS ONE 7:e46688. https://doi.org/10.1371/journal.pone.0046688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Morales HE, Pavlova A, Joseph L, Sunnucks P (2015) Positive and purifying selection in mitochondrial genomes of a bird with mitonuclear discordance. Mol Ecol 24:2820–2837. https://doi.org/10.1111/mec.13203

    Article  CAS  PubMed  Google Scholar 

  62. Pupko T, Pe’er I, Graur D, Hasegawa M, Friedman N (2002) A branch-and-bound algorithm for the inference of ancestral amino-acid sequences when the replacement rate varies among sites: application to the evolution of five gene families. Bioinformatics 18(8):1116–1123. https://doi.org/10.1093/bioinformatics/18.8.1116

    Article  CAS  PubMed  Google Scholar 

  63. Pupko T, Pe’er I, Shamir R, Graur D (2000) A fast algorithm for joint reconstruction of ancestral amino-acid sequences. Mol Biol Evol 17(6):890–896. https://doi.org/10.1093/oxfordjournals.molbev.a026369

    Article  CAS  PubMed  Google Scholar 

  64. Cserkész T, Kiss C, Barkaszi Z et al (2021) Intra- and interspecific morphological variation in sympatric and allopatric populations of Mustela putorius and M. eversmanii (Carnivora: Mustelidae) and detection of potential hybrids. Mamm Res 66:103–114. https://doi.org/10.1007/s13364-020-00543-6

    Article  Google Scholar 

  65. Poledník L, PoledníKová K, Mináriková T, CamlíK G, Beran V (2019) Distribution survey of Steppe Polecat (Mustela eversmanii lesson, 1827) in the Czech Republic in 2012–2015. Příroda Praha 39:67–72

    Google Scholar 

  66. Ben Slimen H, Schaschl H, Knauer F, Suchentrunk F (2017) Selection on the mitochondrial ATP synthase 6 and the NADH dehydrogenase 2 genes in hares (Lepus capensis L., 1758) from a steep ecological gradient in North Africa. BMC Evol Biol 17(1):46. https://doi.org/10.1186/s12862-017-0896-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Balloux F, Handley LL, Jombart T, Liu H, Manica A (2009) Climate shaped the worldwide distribution of human mitochondrial DNA sequence variation. P Roy Soc B 276:3447–3455. https://doi.org/10.1098/rspb.2009.0752

    Article  CAS  Google Scholar 

  68. Consuegra S, John E, Verspoor E, Garcia de Leaniz C (2015) Patterns of natural selection acting on the mitochondrial genome of a locally adapted fish species. Genet Sel Evol 47:58. https://doi.org/10.1186/s12711-015-0138-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lebarbenchon C, Poitevin F, Arnal V, Montgelard C (2010) Phylogeography of the weasel (Mustela nivalis) in the Western-Palaearctic region: combined effects of glacial events and human movements. Heredity 105(5):449–462. https://doi.org/10.1038/hdy.2009.186

    Article  CAS  PubMed  Google Scholar 

  70. Sato T, Abramov AV, Raichev EG et al (2020) Phylogeography and population history of the least weasel (Mustela nivalis) in the Palearctic based on multilocus analysis. J Zoological Syst Evolutionary Res 58:408–426. https://doi.org/10.1111/jzs.12330

    Article  Google Scholar 

  71. Pertoldi C, Breyne P, Cabria MT et al (2006) Genetic structure of the European polecat (Mustela putorius) and its implication for conservation strategies. J Zool 270:102–115. https://doi.org/10.1111/j.1469-7998.2006.00095.x

    Article  Google Scholar 

  72. Croose E, Duckworth JW, Ruette S, Skumatov DV, Kolesnikov VV, Saveljev AP (2018) A review of the status of the western polecat Mustela putorius: a neglected and declining species? Mammalia 82:550–564. https://doi.org/10.1515/mammalia-2017-0092

    Article  Google Scholar 

  73. Caballero A (1994) Developments in the prediction of effective population size. Heredity 73:657–679. https://doi.org/10.1038/hdy.1994.174

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Haiden for supporting with laboratory work.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript. Partial financial support was provided by Wildlife Research - F. Suchentrunk (Vienna).

Author information

Authors and Affiliations

Authors

Contributions

F.S. and H.BS. conceived and designed the study. G.T. did the laboratory work. G.T., A.A., H.BS., S.S., A.W., and F.S. contributed samples or/and to the data analyses. G.T., H.BS. and F.S. wrote the paper and all authors contributed to the drafts before submission. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Hichem Ben Slimen.

Ethics declarations

Ethical approval

all samples were provided by hunters who obtained the specimens in the course of regular hunting management practices, and no animals were killed exclusively for this or any other scientific project. Steppe polecats that are partly under protection in the EU/Austria since 2014, were obtained either earlier or collected as road kills afterwards.

Consent for publication

All authors have read the manuscript and agreed to its submission.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tissaoui, G., Suchentrunk, F., Awadi, A. et al. Evolutionary characteristics of the mitochondrial NADH dehydrogenase subunit 6 gene in some populations of four sympatric Mustela species (Mustelidae, Mammalia) from central Europe. Mol Biol Rep 51, 575 (2024). https://doi.org/10.1007/s11033-024-09505-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09505-6

Keywords

Navigation