Skip to main content
Log in

Interphase chromatin organisation in Arabidopsis nuclei: constraints versus randomness

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The spatial chromatin organisation and molecular interactions within and between chromatin domains and chromosome territories (CTs) are essential for fundamental processes such as replication, transcription and DNA repair via homologous recombination. To analyse the distribution and interaction of whole CTs, centromeres, (sub)telomeres and ~100-kb interstitial chromatin segments in endopolyploid nuclei, specific FISH probes from Arabidopsis thaliana were applied to 2–64C differentiated leaf nuclei. Whereas CTs occupy a distinct and defined volume of the nucleus and do not obviously intermingle with each other in 2–64C nuclei, ~100-kb sister chromatin segments within these CTs become more non-cohesive with increasing endopolyploidy. Centromeres, preferentially located at the nuclear periphery, may show ring- or half-moon like shapes in 2C and 4C nuclei. Sister centromeres tend to associate up to the 8C level. From 16C nuclei on, they become progressively separated. The higher the polyploidy level gets, the more separate chromatids are present. Due to sister chromatid separation in highly endopolyploid nuclei, the centromeric histone variant CENH3, the 180-bp centromeric repeats and pericentromeric heterochromatin form distinct subdomains at adjacent but not intermingling positions. The (sub)telomeres are frequently associated with each other and with the nucleolus and less often with centromeres. The extent of chromatid separation and of chromatin decondensation at subtelomeric chromatin segments varies between chromosome arms. A mainly random distribution and similar shapes of CTs even at higher ploidy levels indicate that in general no substantial CT reorganisation occurs during endopolyploidisation. Non-cohesive sister chromatid regions at chromosome arms and at the (peri)centromere are accompanied by a less dense chromatin conformation in highly endopolyploid nuclei. We discuss the possible function of this conformation in comparison to transcriptionally active regions at insect polytene chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andrey P, Kieu K, Kress C, Lehmann G, Tirichine L, Liu ZC, Biot E, Adenot PG, Hue-Beauvais C, Houba-Herin N, Duranthon V, Devinoy E, Beaujean N, Gaudin V, Maurin Y, Debey P (2010) Statistical analysis of 3D images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei. PLoS Comput Biol 6(7):e1000853. doi:10.1371/journal.pcbi.1000853

    Article  PubMed  CAS  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Aragon-Alcaide L, Reader S, Beven A, Shaw P, Miller T, Moore G (1997) Association of homologous chromosomes during floral development. Curr Biol 7:905–908

    Article  PubMed  CAS  Google Scholar 

  • Armstrong SJ, Franklin FC, Jones GH (2001) Nucleolus-associated telomere clustering and pairing precede meiotic chromosome synapsis in Arabidopsis thaliana. J Cell Sci 114:4207–4217

    PubMed  CAS  Google Scholar 

  • Barow M (2006) Endopolyploidy in seed plants. Bioessays 28:271–281

    Article  PubMed  CAS  Google Scholar 

  • Berchtold D, Fesser S, Bachmann G, Kaiser A, Eilert JC, Frohns F, Sadoni N, Muck J, Kremmer E, Eick D, Layer PG, Zink D (2011) Nuclei of chicken neurons in tissues and three-dimensional cell cultures are organized into distinct radial zones. Chromosome Res 19:165–182

    Article  PubMed  CAS  Google Scholar 

  • Berr A, Schubert I (2007) Interphase chromosome arrangement in Arabidopsis thaliana is similar in differentiated and meristematic tissues and shows a transient mirror symmetry after nuclear division. Genetics 176:853–863

    Article  PubMed  Google Scholar 

  • Berr A, Pecinka A, Meister A, Kreth G, Fuchs J, Blattner FR, Lysak MA, Schubert I (2006) Chromosome arrangement and nuclear architecture but not centromeric sequences are conserved between Arabidopsis thaliana and Arabidopsis lyrata. Plant Journal 48:771–783

    Article  PubMed  CAS  Google Scholar 

  • Blower MD, Sullivan BA, Karpen GH (2002) Conserved organization of centromeric chromatin in flies and humans. Dev Cell 2:319–330

    Article  PubMed  CAS  Google Scholar 

  • Bourdon M et al (2010) Endoreduplication and growth of fleshy fruits. Prog Bot 71:101–132

    Article  CAS  Google Scholar 

  • Bourdon M, Coriton O, Pirrello J, Cheniclet C, Brown SC, Poujol C, Chevalier C, Renaudin JP, Frangne N (2011) In planta quantification of endoreduplication using fluorescent in situ hybridization (FISH). Plant J 66:1089–1099

    Article  PubMed  CAS  Google Scholar 

  • Boyle S, Gilchrist S, Bridger JM, Mahy NL, Ellis JA, Bickmore WA (2001) The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum Mol Genet 10:211–219

    Article  PubMed  CAS  Google Scholar 

  • Branco MR, Pombo A (2006) Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol 4:e138

    Article  PubMed  CAS  Google Scholar 

  • Brown JM, Leach J, Reittie JE, Atzberger A, Lee-Prudhoe J, Wood WG, Higgs DR, Iborra FJ, Buckle VJ (2006) Coregulated human globin genes are frequently in spatial proximity when active. J Cell Biol 172:177–187

    Article  PubMed  CAS  Google Scholar 

  • Bystricky K, Laroche T, van Houwe G, Blaszczyk M, Gasser SM (2005) Chromosome looping in yeast: telomere pairing and coordinated movement reflect anchoring efficiency and territorial organization. J Cell Biol 168:375–387

    Article  PubMed  CAS  Google Scholar 

  • Chakalova L, Fraser P (2010) Organization of transcription. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a000729

  • Chakalova L, Carter D, Debrand E, Goyenechea B, Horton A, Miles J, Osborne C, Fraser P (2005) Developmental regulation of the beta-globin gene locus. Prog Mol Subcell Biol 38:183–206

    Article  PubMed  CAS  Google Scholar 

  • Chandley AC, Speed RM, Leitch AR (1996) Different distributions of homologous chromosomes in adult human Sertoli cells and in lymphocytes signify nuclear differentiation. J Cell Sci 109:773–776

    PubMed  CAS  Google Scholar 

  • Chevalier C, Nafati M, Mathieu-Rivet E, Bourdon M, Frangne N, Cheniclet C, Renaudin JP, Gevaudant F, Hernould M (2011) Elucidating the functional role of endoreduplication in tomato fruit development. Ann Bot 107:1159–1169

    Article  PubMed  CAS  Google Scholar 

  • Cope NF, Fraser P, Eskiw CH (2010) The yin and yang of chromatin spatial organization. Genome Biol 11:204

    Article  PubMed  CAS  Google Scholar 

  • Corredor E, Diez M, Shepherd K, Naranjo T (2005) The positioning of rye homologous chromosomes added to wheat through the cell cycle in somatic cells untreated and treated with colchicine. Cytogenet Genome Res 109:112–119

    Article  PubMed  CAS  Google Scholar 

  • Coulthard AB, Nolan N, Bell JB, Hilliker AJ (2005) Transvection at the vestigial locus of Drosophila melanogaster. Genetics 170:1711–1721

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer M (2010) Chromosome territories. Cold Spring Harb Perspect Biol 2:a003889

    Article  PubMed  CAS  Google Scholar 

  • Cremer M, von Hase J, Volm T, Brero A, Kreth G, Walter J, Fischer C, Solovei I, Cremer C, Cremer T (2001) Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosome Res 9:541–567

    Article  PubMed  CAS  Google Scholar 

  • Croft JA, Bridger JM, Boyle S, Perry P, Teague P, Bickmore WA (1999) Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 145:1119–1131

    Article  PubMed  CAS  Google Scholar 

  • Csink AK, Henikoff S (1998) Large-scale chromosomal movements during interphase progression in Drosophila. J Cell Biol 143:13–22

    Article  PubMed  CAS  Google Scholar 

  • de Nooijer S, Wellink J, Mulder B, Bisseling T (2009) Non-specific interactions are sufficient to explain the position of heterochromatic chromocenters and nucleoli in interphase nuclei. Nucleic Acids Res 37:3558–3568

    Article  PubMed  CAS  Google Scholar 

  • Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295:1306–1311

    Article  PubMed  CAS  Google Scholar 

  • Dong F, Jiang J (1998) Non-Rabl patterns of centromere and telomere distribution in the interphase nuclei of plant cells. Chromosome Res 6:551–558

    Article  PubMed  CAS  Google Scholar 

  • Dostie J, Zhan Y, Dekker J (2007) Chromosome conformation capture carbon copy technology. Curr Protoc Mol Biol 80:21.14.1–21.14.13

  • Duan Z, Andronescu M, Schutz K, McIlwain S, Kim YJ, Lee C, Shendure J, Fields S, Blau CA, Noble WS (2010) A three-dimensional model of the yeast genome. Nature 465:363–367

    Article  PubMed  CAS  Google Scholar 

  • Duncan IW (2002) Transvection effects in Drosophila. Ann Rev Genet 36:521–556

    Article  PubMed  CAS  Google Scholar 

  • Eskiw CH, Cope NF, Clay I, Schoenfelder S, Nagano T, Fraser P (2011) Transcription factories and nuclear organization of the genome. Cold Spring Harb Symp Quant Biol 75:501–506

    Article  Google Scholar 

  • Essers J, van Cappellen WA, Theil AF, van Drunen E, Jaspers NG, Hoeijmakers JH, Wyman C, Vermeulen W, Kanaar R (2005) Dynamics of relative chromosome position during the cell cycle. Mol Biol Cell 16:769–775

    Article  PubMed  CAS  Google Scholar 

  • Fang Y, Spector DL (2005) Centromere positioning and dynamics in living Arabidopsis plants. Mol Biol Cell 16:5710–5718

    Article  PubMed  CAS  Google Scholar 

  • Ferrai C, de Castro IJ, Lavitas L, Chotalia M, Pombo A (2010) Gene positioning. Cold Spring Harb Perspect Biol 2:a000588

    Article  PubMed  CAS  Google Scholar 

  • Fransz P (2004) The interphase nucleus. In: Goodman RM (ed) Encyclopedia of plant and crop science. Marcel Dekker, New York, pp 568–571

    Google Scholar 

  • Fransz P, De Jong JH (2011) From nucleosome to chromosome: a dynamic organization of genetic information. Plant J 66:4–17

    Article  PubMed  CAS  Google Scholar 

  • Fransz P, Armstrong S, Alonso-Blanco C, Fischer TC, Torres-Ruiz RA, Jones G (1998) Cytogenetics for the model system Arabidopsis thaliana. Plant J 13:867–876

    Google Scholar 

  • Fransz P, De Jong JH, Lysak M, Castiglione MR, Schubert I (2002) Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proc Natl Acad Sci USA 99:14584–14589

    Article  PubMed  CAS  Google Scholar 

  • Fritsch CC, Langowski J (2011) Chromosome dynamics, molecular crowding, and diffusion in the interphase cell nucleus: a Monte Carlo lattice simulation study. Chromosome Res 19:63–81

    Article  PubMed  CAS  Google Scholar 

  • Fung JC, Marshall WF, Dernburg A, Agard DA, Sedat JW (1998) Homologous chromosome pairing in Drosophila melanogaster proceeds through multiple independent initiations. J Cell Biol 141:5–20

    Article  PubMed  CAS  Google Scholar 

  • Galbraith DW, Harkins KR, Knapp S (1991) Systemic endopolyploidy in Arabidopsis thaliana. Plant Physiol 96:985–989

    Article  PubMed  CAS  Google Scholar 

  • Galitski T, Saldanha AJ, Styles CA, Lander ES, Fink GR (1999) Ploidy regulation of gene expression. Science 285:251–254

    Article  PubMed  CAS  Google Scholar 

  • Gerlich D, Beaudouin J, Kalbfuss B, Daigle N, Eils R, Ellenberg J (2003) Global chromosome positions are transmitted through mitosis in mammalian cells. Cell 112:751–764

    Article  PubMed  CAS  Google Scholar 

  • Glynn EF, Megee PC, Yu HG, Mistrot C, Unal E, Koshland DE, DeRisi JL, Gerton JL (2004) Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. Plos Biology 2:1325–1339

    Article  CAS  Google Scholar 

  • Gotta M, Laroche T, Formenton A, Maillet L, Scherthan H, Gasser SM (1996) The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae. J Cell Biol 134:1349–1363

    Article  PubMed  CAS  Google Scholar 

  • Guacci V, Hogan E, Koshland D (1994) Chromosome condensation and sister chromatid pairing in budding yeast. J Cell Biol 125:517–530

    Article  PubMed  CAS  Google Scholar 

  • Hase Y, Trung KH, Matsunaga T, Tanaka A (2006) A mutation in the uvi4 gene promotes progression of endo-reduplication and confers increased tolerance towards ultraviolet B light. Plant J 46:317–326

    Article  PubMed  CAS  Google Scholar 

  • Heride C, Ricoul M, Kieu K, von Hase J, Guillemot V, Cremer C, Dubrana K, Sabatier L (2010) Distance between homologous chromosomes results from chromosome positioning constraints. J Cell Sci 123:4063–4075

    Article  PubMed  CAS  Google Scholar 

  • Hiraoka Y, Dernburg AF, Parmelee SJ, Rykowski MC, Agard DA, Sedat JW (1993) The onset of homologous chromosome pairing during Drosophila melanogaster embryogenesis. J Cell Biol 120:591–600

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser M, Mathog D, Gruenbaum Y, Saumweber H, Sedat JW (1986) Spatial organization of chromosomes in the salivary gland nuclei of Drosophila melanogaster. J Cell Biol 102:112–123

    Article  PubMed  CAS  Google Scholar 

  • Ijdo JW, Wells RA, Baldini A, Reeders ST (1991) Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res 19:4780

    Google Scholar 

  • Jasencakova Z, Meister A, Walter J, Turner BM, Schubert I (2000) Histone H4 acetylation of euchromatin and heterochromatin is cell cycle dependent and correlated with replication rather than with transcription. Plant Cell 12:2087–2100

    PubMed  CAS  Google Scholar 

  • Jin QW, Fuchs J, Loidl J (2000) Centromere clustering is a major determinant of yeast interphase nuclear organization. J Cell Sci 113:1903–1912

    PubMed  CAS  Google Scholar 

  • Jovtchev G, Schubert V, Meister A, Barow M, Schubert I (2006) Nuclear DNA content and nuclear and cell volume are positively correlated in angiosperms. Cytogenet Genome Res 114:77–82

    Article  PubMed  CAS  Google Scholar 

  • Jovtchev G, Watanabe K, Pecinka A, Rosin FM, Mette MF, Lam E, Schubert I (2008) Size and number of tandem repeat arrays can determine somatic homologous pairing of transgene loci mediated by epigenetic modifications in Arabidopsis thaliana nuclei. Chromosoma 117:267–276

    Article  PubMed  Google Scholar 

  • Jovtchev G, Borisova BE, Kuhlmann M, Fuchs J, Watanabe K, Schubert I, Mette MF (2011) Pairing of lacO tandem repeats in Arabidopsis thaliana nuclei requires the presence of hypermethylated, large arrays at two chromosomal positions, but does not depend on H3-lysine-9-dimethylation. Chromosoma 120:609–619

    Article  PubMed  CAS  Google Scholar 

  • Kato N, Lam E (2003) Chromatin of endoreduplicated pavement cells has greater range of movement than that of diploid guard cells in Arabidopsis thaliana. J Cell Sci 116:2195–2201

    Article  PubMed  CAS  Google Scholar 

  • Kawabe A, Nasuda S (2005) Structure and genomic organization of centromeric repeats in Arabidopsis species. Mol Genet Genomics 272:593–602

    Article  PubMed  CAS  Google Scholar 

  • Koehler D, Zakhartchenko V, Froenicke L, Stone G, Stanyon R, Wolf E, Cremer T, Brero A (2009) Changes of higher order chromatin arrangements during major genome activation in bovine preimplantation embryos. Exp Cell Res 315:2053–2063

    Google Scholar 

  • Kondorosi E, Kondorosi A (2004) Endoreduplication and activation of the anaphase-promoting complex during symbiotic cell development. FEBS Lett 567:152–157

    Article  PubMed  CAS  Google Scholar 

  • Kozubek S, Lukasova E, Jirsova P, Koutna I, Kozubek M, Ganova A, Bartova E, Falk M, Pasekova R (2002) 3D structure of the human genome: order in randomness. Chromosoma 111:321–331

    Article  PubMed  CAS  Google Scholar 

  • Küpper K, Kolbl A, Biener D, Dittrich S, von Hase J, Thormeyer T, Fiegler H, Carter NP, Speicher MR, Cremer T, Cremer M (2007) Radial chromatin positioning is shaped by local gene density, not by gene expression. Chromosoma 116:285–306

    Article  PubMed  Google Scholar 

  • Laloraya S, Guacci V, Koshland D (2000) Chromosomal addresses of the cohesin component Mcd1p. J Cell Biol 151:1047–1056

    Article  PubMed  CAS  Google Scholar 

  • Lanctot C, Cheutin T, Cremer M, Cavalli G, Cremer T (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 8:104–115

    Article  PubMed  CAS  Google Scholar 

  • Leiva-Neto JT, Grafi G, Sabelli PA, Dante RA, Woo YM, Maddock S, Gordon-Kamm WJ, Larkins BA (2004) A dominant negative mutant of cyclin-dependent kinase A reduces endoreduplication but not cell size or gene expression in maize endosperm. Plant Cell 16:1854–1869

    Article  PubMed  CAS  Google Scholar 

  • Lermontova I, Schubert V, Fuchs J, Klatte S, Macas J, Schubert I (2006) Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence of the histone fold domain. Plant Cell 18:2443–2451

    Article  PubMed  CAS  Google Scholar 

  • Lermontova I, Fuchs J, Schubert V, Schubert I (2007) Loading time of the centromeric histone H3 variant differs between plants and animals. Chromosoma 116:507–510

    Article  PubMed  Google Scholar 

  • Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293

    Article  PubMed  CAS  Google Scholar 

  • Louwers M, Bader R, Haring M, van Driel R, de Laat W, Stam M (2009) Tissue- and expression level-specific chromatin looping at maize b1 epialleles. Plant Cell 21:832–842

    Article  PubMed  CAS  Google Scholar 

  • Lukasova E, Kozubek S, Kozubek M, Falk M, Amrichova J (2002) The 3D structure of human chromosomes in cell nuclei. Chromosome Res 10:535–548

    Article  PubMed  CAS  Google Scholar 

  • Maestra B, De Jong JH, Shepherd K, Naranjo T (2002) Chromosome arrangement and behaviour of two rye homologous telosomes at the onset of meiosis in disomic wheat-5RL addition lines with and without the Ph1 locus. Chromosome Res 10:655–667

    Article  PubMed  CAS  Google Scholar 

  • Maguire MP (1990) Sister chromatid cohesiveness: vital function, obscure mechanism. Biochem Cell Biol 68:1231–1242

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Perez E, Shaw P, Reader S, Aragon-Alcaide L, Miller T, Moore G (1999) Homologous chromosome pairing in wheat. J Cell Sci 112(Pt 11):1761–1769

    PubMed  CAS  Google Scholar 

  • Martinez-Perez E, Shaw PJ, Moore G (2000) Polyploidy induces centromere association. J Cell Biol 148:233–238

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Zapater JM, Estelle AM, Sommerville CR (1986) A highly repeated DNA sequence in Arabidopsis thaliana. Mol Gen Genet 204:4417–4423

    Article  Google Scholar 

  • Mateos-Langerak J, Bohn M, de Leeuw W, Giromus O, Manders EM, Verschure PJ, Indemans MH, Gierman HJ, Heermann DW, van Driel R, Goetze S (2009) Spatially confined folding of chromatin in the interphase nucleus. Proc Natl Acad Sci USA 106:3812–3817

    Article  PubMed  CAS  Google Scholar 

  • Mathieu O, Jasencakova Z, Vaillant I, Gendrel AV, Colot V, Schubert I, Tourmente S (2003) Changes in 5S rDNA chromatin organization and transcription during heterochromatin establishment in Arabidopsis. Plant Cell 15:2929–2939

    Article  PubMed  CAS  Google Scholar 

  • McNally JG, Mazza D (2010) Fractal geometry in the nucleus. EMBO J 29:2–3

    Article  PubMed  CAS  Google Scholar 

  • Melaragno JE, Mehrotra B, Coleman AW (1993) Relationship between endopolyploidy and cell size in epidermal tissue of Arabidopsis. Plant Cell 5:1661–1668

    PubMed  Google Scholar 

  • Meshorer E, Misteli T (2006) Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol 7:540–546

    Article  PubMed  CAS  Google Scholar 

  • Mirny LA (2011) The fractal globule as a model of chromatin architecture in the cell. Chromosome Res 19:37–51

    Article  PubMed  CAS  Google Scholar 

  • Misteli T (2007) Beyond the sequence: cellular organization of genome function. Cell 128:787–800

    Article  PubMed  CAS  Google Scholar 

  • Misteli T (2009) Self-organization in the genome. Proc Natl Acad Sci USA 106:6885–6886

    Google Scholar 

  • Misteli T, Soutoglou E (2009) The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat Rev Mol Cell Biol 10:243–254

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki WY, Orr-Weaver TL (1994) Sister-chromatid cohesion in mitosis and meiosis. Annu Rev Genet 28:167–187

    Article  PubMed  CAS  Google Scholar 

  • Munkel C, Eils R, Dietzel S, Zink D, Mehring C, Wedemann G, Cremer T, Langowski J (1999) Compartmentalization of interphase chromosomes observed in simulation and experiment. J Mol Biol 285:1053–1065

    Article  PubMed  CAS  Google Scholar 

  • Nafati M, Cheniclet C, Hernould M, Do PT, Fernie AR, Chevalier C, Gevaudant F (2011) The specific overexpression of a cyclin-dependent kinase inhibitor in tomato fruit mesocarp cells uncouples endoreduplication and cell growth. Plant J 65:543–556

    Article  PubMed  CAS  Google Scholar 

  • Nagaki K, Talbert PB, Zhong CX, Dawe RK, Henikoff S, Jiang J (2003) Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres. Genetics 163:1221–1225

    PubMed  CAS  Google Scholar 

  • Nagele RG, Freeman T, McMorrow L, Thomson Z, Kitson-Wind K, Lee H (1999) Chromosomes exhibit preferential positioning in nuclei of quiescent human cells. J Cell Sci 112:525–535

    PubMed  CAS  Google Scholar 

  • Nagele RG, Velasco AQ, Anderson WJ, McMahon DJ, Thomson Z, Fazekas J, Wind K, Lee H (2001) Telomere associations in interphase nuclei: possible role in maintenance of interphase chromosome topology. J Cell Sci 114:377–388

    PubMed  CAS  Google Scholar 

  • Nagl W (1976) DNA endoreduplication and polyteny understood as evolutionary strategies. Nature 261:614–615

    Article  PubMed  CAS  Google Scholar 

  • Nemeth A, Conesa A, Santoyo-Lopez J, Medina I, Montaner D, Peterfia B, Solovei I, Cremer T, Dopazo J, Langst G (2010) Initial genomics of the human nucleolus. PLoS Genet 6:e1000889

    Article  PubMed  CAS  Google Scholar 

  • Neusser M, Schubel V, Koch A, Cremer T, Muller S (2007) Evolutionarily conserved, cell type and species-specific higher order chromatin arrangements in interphase nuclei of primates. Chromosoma 116:307–320

    Google Scholar 

  • Onn I, Heidinger-Pauli JM, Guacci V, Ünal E, Koshland DE (2008) Sister chromatid cohesion: a simple concept with a complex reality. Annu Rev Cell Dev Biol 24:105–129

    Article  PubMed  CAS  Google Scholar 

  • Papantonis A, Cook PR (2010) Genome architecture and the role of transcription. Curr Opin Cell Biol 22:271–276

    Article  PubMed  CAS  Google Scholar 

  • Parada LA, Sotiriou S, Misteli T (2004) Spatial genome organization. Exp Cell Res 296:64–70

    Article  PubMed  CAS  Google Scholar 

  • Pavet V, Quintero C, Cecchini NM, Rosa AL, Alvarez ME (2006) Arabidopsis displays centromeric DNA hypomethylation and cytological alterations of heterochromatin upon attack by Pseudomonas syringae. Mol Plant Microbe Interact 19:577–587

    Article  PubMed  CAS  Google Scholar 

  • Pecinka A, Schubert V, Meister A, Kreth G, Klatte M, Lysak MA, Fuchs J, Schubert I (2004) Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes. Chromosoma 113:258–269

    Article  PubMed  CAS  Google Scholar 

  • Pecinka A, Kato N, Meister A, Probst AV, Schubert I, Lam E (2005) Tandem repetitive transgenes and fluorescent chromatin tags alter local interphase chromosome arrangement in Arabidopsis thaliana. J Cell Sci 118:3751–3758

    Google Scholar 

  • Pecinka A, Dinh HQ, Baubec T, Rosa M, Lettner N, Mittelsten Scheid O (2010) Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis. Plant Cell 22:3118–3129

    Google Scholar 

  • Prieto P, Santos AP, Moore G, Shaw P (2004) Chromosomes associate premeiotically and in xylem vessel cells via their telomeres and centromeres in diploid rice (Oryza sativa). Chromosoma 112:300–307

    Article  PubMed  Google Scholar 

  • Rabl C (1885) Über Zelltheilung. Morph Jb 10:214–330

    Google Scholar 

  • Radziejwoski A, Vlieghe K, Lammens T, Berckmans B, Maes S, Jansen MA, Knappe C, Albert A, Seidlitz HK, Bahnweg G, Inze D, De Veylder L (2011) Atypical E2F activity coordinates PHR1 photolyase gene transcription with endoreduplication onset. EMBO J 30:355–363

    Article  PubMed  CAS  Google Scholar 

  • Rajapakse I, Perlman MD, Scalzo D, Kooperberg C, Groudine M, Kosak ST (2009) The emergence of lineage-specific chromosomal topologies from coordinate gene regulation. Proc Natl Acad Sci USA 106:6679–6684

    Article  PubMed  CAS  Google Scholar 

  • Saez-Vasquez J, Gadal O (2010) Genome organization and function: a view from yeast and Arabidopsis. Molecular Plant 3:678–690

    Article  PubMed  CAS  Google Scholar 

  • Santaguida S, Musacchio A (2009) The life and miracles of kinetochores. EMBO J 28:2511–2531

    Article  PubMed  CAS  Google Scholar 

  • Scheuermann MO, Tajbakhsh J, Kurz A, Saracoglu K, Eils R, Lichter P (2004) Topology of genes and nontranscribed sequences in human interphase nuclei. Exp Cell Res 301:266–279

    Article  PubMed  CAS  Google Scholar 

  • Schoenfelder S, Sexton T, Chakalova L, Cope NF, Horton A, Andrews S, Kurukuti S, Mitchell JA, Umlauf D, Dimitrova DS, Eskiw CH, Luo Y, Wei CL, Ruan Y, Bieker JJ, Fraser P (2010) Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat Genet 42:53–61

    Article  PubMed  CAS  Google Scholar 

  • Schubert V (2011) No neocentric activity on Aegilops markgrafii chromosome E. Cytogenet Genome Res 132:100–104

    Article  PubMed  CAS  Google Scholar 

  • Schubert I, Shaw P (2011) Organization and dynamics of plant interphase chromosomes. Trends Plant Sci 16:273–281

    Article  PubMed  CAS  Google Scholar 

  • Schubert I, Fransz PF, Fuchs J, De Jong JH (2001) Chromosome painting in plants. Methods Cell Sci 23:57–69

    Article  PubMed  CAS  Google Scholar 

  • Schubert V, Klatte M, Pecinka A, Meister A, Jasencakova Z, Schubert I (2006) Sister chromatids are often incompletely aligned in meristematic and endopolyploid interphase nuclei of Arabidopsis thaliana. Genetics 172:467–475

    Article  PubMed  CAS  Google Scholar 

  • Schubert V, Kim YM, Berr A, Fuchs J, Meister A, Marschner S, Schubert I (2007) Random homologous pairing and incomplete sister chromatid alignment are common in angiosperm interphase nuclei. Mol Genet Genomics 278:167–176

    Article  PubMed  CAS  Google Scholar 

  • Schubert V, Kim YM, Schubert I (2008) Arabidopsis sister chromatids often show complete alignment or separation along a 1.2-Mb euchromatic region but no cohesion “hot spots”. Chromosoma 117:261–266

    Article  PubMed  CAS  Google Scholar 

  • Schubert V, Meister A, Tsujimoto H, Endo TR, Houben A (2011) Similar rye A and B chromosome organization in meristematic and differentiated interphase nuclei. Chromosome Res 19:645–655

    Article  PubMed  CAS  Google Scholar 

  • Selig S, Okumura K, Ward DC, Cedar H (1992) Delineation of DNA replication time zones by fluorescence in situ hybridization. EMBO J 11:1217–1225

    PubMed  CAS  Google Scholar 

  • Shibata F, Murata M (2004) Differential localization of the centromere-specific proteins in the major centromeric satellite of Arabidopsis thaliana. J Cell Sci 117:2963–2970

    Article  PubMed  CAS  Google Scholar 

  • Soppe WJ, Jasencakova Z, Houben A, Kakutani T, Meister A, Huang MS, Jacobsen SE, Schubert I, Fransz PF (2002) DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis. EMBO J 21:6549–6559

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto-Shirasu K, Roberts K (2003) "Big it up": endoreduplication and cell-size control in plants. Curr Opin Plant Biol 6:544–553

    Article  PubMed  CAS  Google Scholar 

  • Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S (2002) Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14:1053–1066

    Article  PubMed  CAS  Google Scholar 

  • Tessadori F, Chupeau MC, Chupeau Y, Knip M, Germann S, van Driel R, Fransz P, Gaudin V (2007a) Large-scale dissociation and sequential reassembly of pericentric heterochromatin in dedifferentiated Arabidopsis cells. J Cell Sci 120:1200–1208

    Article  PubMed  CAS  Google Scholar 

  • Tessadori F, Schulkes RK, van Driel R, Fransz P (2007b) Light-regulated large-scale reorganization of chromatin during the floral transition in Arabidopsis. Plant J 50:848–857

    Article  PubMed  CAS  Google Scholar 

  • Tessadori F, van Zanten M, Pavlova P, Clifton R, Pontvianne F, Snoek LB, Millenaar FF, Schulkes RK, van Driel R, Voesenek LA, Spillane C, Pikaard CS, Fransz P, Peeters AJ (2009) Phytochrome B and histone deacetylase 6 control light-induced chromatin compaction in Arabidopsis thaliana. PLoS Genet 5:e1000638

    Article  PubMed  CAS  Google Scholar 

  • Thomson I, Gilchrist S, Bickmore WA, Chubb JR (2004) The radial positioning of chromatin is not inherited through mitosis but is established de novo in early G1. Curr Biol 14:166–172

    Article  PubMed  CAS  Google Scholar 

  • Tolhuis B, Blom M, Kerkhoven RM, Pagie L, Teunissen H, Nieuwland M, Simonis M, de Laat W, van Lohuizen M, van Steensel B (2011) Interactions among polycomb domains are guided by chromosome architecture. PLoS Genet 7:e1001343

    Article  PubMed  CAS  Google Scholar 

  • Uhlmann F (2008) Molecular biology: cohesin branches out. Nature 451:777–778

    Article  PubMed  CAS  Google Scholar 

  • van Zanten M, Tessadori F, McLoughlin F, Smith R, Millenaar FF, van Driel R, Voesenek LA, Peeters AJ, Fransz P (2010) Photoreceptors CRYTOCHROME2 and phytochrome B control chromatin compaction in Arabidopsis. Plant Physiol 154:1686–1696

    Article  PubMed  CAS  Google Scholar 

  • van Zanten M, Koini MA, Geyer R, Liu Y, Brambilla V, Bartels D, Koornneef M, Fransz P, Soppe WJ (2011) Seed maturation in Arabidopsis thaliana is characterized by nuclear size reduction and increased chromatin condensation. Proc Natl Acad Sci USA 108:20219–20224

    Article  PubMed  Google Scholar 

  • Verdaasdonk JS, Bloom K (2011) Centromeres: unique chromatin structures that drive chromosome segregation. Nat Rev Mol Cell Biol 12:320–332

    Article  PubMed  CAS  Google Scholar 

  • Volpi EV, Sheer D, Uhlmann F (2001) Cohesion, but not too close. Curr Biol 11:R378

    Article  PubMed  CAS  Google Scholar 

  • Walter J, Schermelleh L, Cremer M, Tashiro S, Cremer T (2003) Chromosome order in HeLa cells changes during mitosis and early G1, but is stably maintained during subsequent interphase stages. J Cell Biol 160:685–697

    Article  PubMed  CAS  Google Scholar 

  • Ward PB (2002) FISH probes and labelling techniques. In: Beatty BS, Mai J, Squire J (eds) FISH: a practical approach (practical approach series: 260). Oxford University Press, Oxford, pp 5–28

    Google Scholar 

  • Watanabe K, Pacher M, Dukowic S, Schubert V, Puchta H, Schubert I (2009) The structural maintenance of chromosomes 5/6 complex promotes sister chromatid alignment and homologous recombination after DNA damage in Arabidopsis thaliana. Plant Cell 21:2688–2699

    Article  PubMed  CAS  Google Scholar 

  • Wegel E, Shaw P (2005) Gene activation and deactivation related changes in the three-dimensional structure of chromatin. Chromosoma 114:331–337

    Article  PubMed  Google Scholar 

  • Wegel E, Vallejos RH, Christou P, Stoger E, Shaw P (2005) Large-scale chromatin decondensation induced in a developmentally activated transgene locus. J Cell Sci 118:1021–1031

    Article  PubMed  CAS  Google Scholar 

  • Wegel E, Koumproglou R, Shaw P, Osbourn A (2009) Cell type-specific chromatin decondensation of a metabolic gene cluster in oats. Plant Cell 21:3926–3936

    Article  PubMed  CAS  Google Scholar 

  • Zhao Z, Tavoosidana G, Sjolinder M, Gondor A, Mariano P, Wang S, Kanduri C, Lezcano M, Sandhu KS, Singh U, Pant V, Tiwari V, Kurukuti S, Ohlsson R (2006) Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet 38:1341–1347

    Article  PubMed  CAS  Google Scholar 

  • Zhimulev IF, Belyaeva ES, Semeshin VF, Koryakov DE, Demakov SA, Demakova OV, Pokholkova GV, Andreyeva EN (2004) Polytene chromosomes: 70 years of genetic research. Intern Rev Cytol 241:203–275

    Article  CAS  Google Scholar 

  • Zink D, Amaral MD, Englmann A, Lang S, Clarke LA, Rudolph C, Alt F, Luther K, Braz C, Sadoni N, Rosenecker J, Schindelhauer D (2004) Transcription-dependent spatial arrangements of CFTR and adjacent genes in human cell nuclei. J Cell Biol 166:815–825

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Jörg Fuchs for flow sorting of nuclei, Martina Kühne, Andrea Kunze, Joachim Bruder and Rita Schubert for excellent technical assistance, Ingo Schubert and Andreas Houben for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veit Schubert.

Additional information

Communicated by Peter Shaw

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schubert, V., Berr, A. & Meister, A. Interphase chromatin organisation in Arabidopsis nuclei: constraints versus randomness. Chromosoma 121, 369–387 (2012). https://doi.org/10.1007/s00412-012-0367-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-012-0367-8

Keywords

Navigation