Skip to main content
Log in

Chromosomal detection of simple sequence repeats (SSRs) using nondenaturing FISH (ND-FISH)

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Simple Sequence Repeats (SSRs) are known to be scattered and present in high number in eukaryotic genomes. We demonstrate that dye-labeled oligodeoxyribonucleotides with repeated mono-, di-, tri, or tetranucleotide motifs (15-20 nucleotides in length) have an unexpected ability to recognize SSR target sequences in non-denatured chromosomes. The results show that all these probes are able to invade chromosomes, independent of the size of the repeat motif, their nucleotide sequence, or their ability to form alternative B-DNA structures such as triplex DNA. This novel and remarkable property of binding SSR oligonucleotides to duplex DNA targets permitted the development of a non-denaturing fluorescence in situ hybridization method that quickly and efficiently detects SSR-enriched chromosome regions in mitotic, meiotic, and polytene chromosome spreads of different model organisms. These results have implications for genome analysis and for investigating the roles of SSRs in chromosome structure and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Beckmann JS, Weber JL (1992) Survey of human and rat microsatellites. Genomics 12:627–631

    Article  CAS  Google Scholar 

  • Bernstein E, Allis CD (2005) RNA meets chromatin. Genes Dev 19:1935–1955

    Article  Google Scholar 

  • Cuadrado A, Jouve N (2007a) Similarities in the chromosomal distribution of AG and AC repeats within and between Drosophila, human and barley chromosomes. Cytogenet Genome Res 119:91–99

    Article  CAS  PubMed  Google Scholar 

  • Cuadrado A, Jouve N (2007b) The non-random distribution of long clusters of all possible classes of trinucleotide repeats in barley chromosomes. Chromosome Res 15:711–720

    Article  CAS  PubMed  Google Scholar 

  • Cuadrado A, Schwarzacher T (1999) The chromosomal organization of simple sequence repeats in wheat and rye genomes. Chromosoma 107:587–594

    Article  Google Scholar 

  • Cuadrado A, Schwarzacher T, Jouve N (2000) Identification of different chromatin classes in wheat using in situ hybridization with simple sequence repeat oligonucleotides. Theor Appl Genet 101:711–717

    Article  CAS  Google Scholar 

  • Cuadrado A, Cardoso M, Jouve N (2008) Physical organisation of simple sequence repeats (SSRs) in Triticeae: structural, functional and evolutionary impliations. Cytogenet Genome Res 120:210–219

    Article  CAS  PubMed  Google Scholar 

  • Cuadrado A, Golczyk H, Jouve N (2009) A novel, simple and rappid nondenaturing FISH technique for the detection of plant telomeres. Potential used and possible target structures detected. Chromosom Res 17:755–762

    Article  CAS  Google Scholar 

  • Epplen JT (1988) On simple repeated GA TC A sequences in animal genomes: a critical reappraisal. J Hered 79:409–417

    CAS  PubMed  Google Scholar 

  • Fox KR (2000) Targeting DNA with triplexes. Curr Med Chem 7:17–37

    CAS  PubMed  Google Scholar 

  • Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885

    Article  CAS  PubMed  Google Scholar 

  • Grewal SI, Elgin SC (2007) Transcription and RNA interference in the formation of heterochromatin. Nature 143:399–406

    Article  Google Scholar 

  • Hancock JM (2002) Genome size and the accumulation of simple sequence repeats: implications of new data from genome sequencing projects. Genetica 115:93–103

    Article  CAS  PubMed  Google Scholar 

  • Jeffreys AJ, Wilson V, Thein SL (1985) Hypervariable ‘minisatelite’ regions in human DNA. Nature 314:67–73

    Article  CAS  PubMed  Google Scholar 

  • Johnson MD III, Fresco JR (1999) Trird-strand in situ hybridization (TISH) to non-denatured metaphase spreads and interphase nuclei. Chromosoma 108:181–189

    Article  CAS  PubMed  Google Scholar 

  • Katti MV, Ranjekar PK, Gupta VS (2001) Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol Biol Evol 18:1161–1167

    CAS  PubMed  Google Scholar 

  • Kovtun IV, McMurray CT (2009) Features of trinucleotide repeat instability in vivo. Cell Research 18:198–213

    Article  Google Scholar 

  • La Rota M, Kantery RV, Yu JK, Zorreéis ME (2005) Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat, and barley. BioMed 1:23

    Google Scholar 

  • Lohe AR, Hilliker AJ, Roberts PA (1993) Mapping simple repeated DNA sequences in heterochromatin of Drosophila melanogaster. Genetics 134:1149–1174

    CAS  PubMed  Google Scholar 

  • Lowenhaupt K, Rich A, Pardue ML (1989) Nonrandom distribution of long mono- and dinucleotide repeats in Drosophila chromosomes: correlations with dosage compensation, heterochromatin and recombination. MCB 9:1173–1182

    CAS  PubMed  Google Scholar 

  • Mahadevaiah SK, Costa Y, Turner JM (2009) Using RNA FISH to study gene expression during mammalian meiosis. Methods Mol Biol 558:433–444

    Article  CAS  PubMed  Google Scholar 

  • Nanda I, Neitzel H, Sperling K, Studer R, Epplen JT (1998) Simple GA TC A repeats characterize the X chromosomal heterochromatin of Microtus agrestis, European field vole (Rodentia, Cricetidae). Chromosoma 3:213–219

    Google Scholar 

  • Nanda I, Zischler H, Epplen C, Guttenbach M, Schmid M (1991) Chromosomal organization of simple repeated DNA sequences used for DNA fingerprinting. Electrophoresis 12:193–203

    Article  CAS  PubMed  Google Scholar 

  • Ohno M, Fukagawa T, Lee JS, Ikemura T (2002) Triplex-forming DNAs in the human interphase nucleus visualized in situ by polypurine/polypyrimidine DNA probes and antitriplex antibodies. Chromosoma 111:201–213

    Article  CAS  PubMed  Google Scholar 

  • Pardue ML, Lowenhaupt K, Rich A, Nordheim A (1987) (dC-dA)n. (dG-dT)n sequences have evolutionarily conserved chromosomal locations in Drosophila with implications for roles in chromosome structure and function. EMBO 6:1781–1789

    CAS  Google Scholar 

  • Pedersen C, Linde-Laursen I (1994) Chromosomal locations of four minor rDNA loci and a marker microsatellite sequence in barley. Chromosome Res 2:67–71

    Article  Google Scholar 

  • Potaman VN (2003) Applications of triple-stranded nucleic acid structures to DNA purification, detection and analysis. Rev Mol Diagn 3:481–496

    Article  CAS  Google Scholar 

  • Raff JW, Kellum R, Alberts B (1994) The Drosophila GAGA transcription factor is associated with specific regions of heterochromatin throughout the cell cycle. EMBO 13:5977–5983

    CAS  Google Scholar 

  • Reddy RS, Housman DE (1997) The complex pathology of trinucleotide repeats. Curr Opin Cell Biol 9:364–372

    Article  CAS  PubMed  Google Scholar 

  • Schmidt T, Heslop-Harrison JS (1996) The physical and genomic organization of microsatellites in sugar beet. Proc Natl Acad Sci USA 93:8761–8765

    Article  CAS  PubMed  Google Scholar 

  • Silahtaroglu AN, Tommerup N, Vissing H (2003) FISHing with locked nucleic acids (LNA). Evaluation of different LNA/DNA mixmers. Mol Cell Probes 17:165–169

    Article  CAS  PubMed  Google Scholar 

  • Sinden RR (1999) Trinucleotide repeats: biological implications of the DNA structures associated with disease-causing triplet repeats. Am J Hum Genet 64:346–353

    Article  CAS  PubMed  Google Scholar 

  • Subramanian S, Mishra RK, Singh L (2003) Genome-wide analysis of Bkm sequences (GATA repeats): predominant association with sex chromosomes and potential role in higher order chromatin organization and function. Bioinformatics 19:681–685

    Article  CAS  PubMed  Google Scholar 

  • Sugimura K, Takebayashi S, Ogata S, Taguchi H, Okumura K (2007) Non-denaturing fluorescence in situ hybridization to find replication origins in a specific genome region on the DNA fiber. Biosci Bioechnol Biochem 71:627–632

    Article  CAS  Google Scholar 

  • Tautz D, Renz M (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12:4127–4138

    Article  CAS  PubMed  Google Scholar 

  • Toth G, Gaspari Z, Jurka J (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 7:967–981

    Article  Google Scholar 

  • Zhang X, Ishihara T, Corey D (2000) Strand invasion by mixed base PNAs and a PNA-peptide chimera. Nucleic Acids Res 17:3332–3338

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Spanish Ministry of Science and Innovation (AGL 2009-10373). The authors thank Adrian Burton for linguistic assistance. We also wish to thank two anonymous referees for helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángeles Cuadrado.

Additional information

Communicated by L. Comai

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Confirmation that SSR-enriched chromosome regions in non-denatured barley chromosomes are mainly in a duplex state. The left and right panels show the results of ND-FISH (a-b) and FISH (c-d) experiments respectively when using (AAG)n as a probe. Only some interphase nuclei showed signals after ND-FISH (a-b) No signals were observed in mitotic chromosomes (b). Presumably, the main target structures detected using (AAG)n as probe, under nondenaturing hybridization conditions are ssDNA. In contrast, all the interphase nuclei (c) and mitotic chromosomes (d) showed signals after standard FISH. Scale bar 10 0 m (JPG 67.1 KB)

High resolution image file (TIFF 1.73 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuadrado, Á., Jouve, N. Chromosomal detection of simple sequence repeats (SSRs) using nondenaturing FISH (ND-FISH). Chromosoma 119, 495–503 (2010). https://doi.org/10.1007/s00412-010-0273-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-010-0273-x

Keywords

Navigation