Skip to main content
Log in

The nonrandom distribution of long clusters of all possible classes of trinucleotide repeats in barley chromosomes

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

This paper is the first to report the long-range organization of all possible classes of trinucleotide motifs in a higher plant genome. Fluorescent in situ hybridization (FISH), employing the synthetic oligonucleotides (AAC)5, (AAG)5, (AAT)5, (AGG)5, (CAC)5, (CAT)5, (CAG)5, (ACT)5, (ACG)5 and (GCC)5, was used to characterize the nonrandom and motif-dependent distribution of tandem arrays of trinucleotide repeats in the metaphase chromosomes and interphase nuclei of barley (Hordeum vulgare L.). This provided detailed information on the sequence content of barley chromatin and allowed the saturation of the physical map of all barley chromosomes. The following conclusions were also drawn: (1) Except for (AAT)5 and (GCC)5, the studied repetitive motifs have a characteristic pattern of distribution in terms of their in situ FISH signals. Some permit the accurate identification of individual chromosomes. (2) (CAG)5, (CAT)5 and (ACT)5 are not found in all barley chromosomes. (3) With the exception of (ACT)5, the remaining trinucleotide repeats occur predominantly in the heterochromatin and are largely absent from the euchromatic regions. Moreover, (CAC)5, (ACG)5 and (CAG)5 are exclusively concentrated in the centromeres. The employment of simple synthetic probes for the identification of chromosomes and genomic characterization, and their importance in studies on genome organization, function and evolution, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beckmann JS, Weber JL (1992) Survey of human and rat microsatellites. Genomics 12: 627–631.

    Article  CAS  Google Scholar 

  • Cardle L, Ramsay L, Milbourne D, Macaulay M, Marshall D, Waugh R (2000) Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics 156: 847–853.

    PubMed  CAS  Google Scholar 

  • Cheng Z, Murata M (2003) A centromeric tandem repeat family originating from a part of Ty3/gypsy-retroelement in wheat and its relatives. Genetics 164: 665–672.

    PubMed  CAS  Google Scholar 

  • Cuadrado A, Jouve N (2002) Evolutionary trends of different repetitive DNA sequences during speciation in genus Secale. J Hered 93: 339–345.

    Article  CAS  Google Scholar 

  • Cuadrado A, Schwarzacher T (1998) The chromosomal organization of simple sequence repeats in wheat and rye genomes. Chromosoma 107: 587–594.

    Article  PubMed  CAS  Google Scholar 

  • Cuadrado A, Schwarzacher T, Jouve N (2000) Identification of different chromatin classes in wheat using in situ hybridization with simple sequence repeat oligonucleotides. Theor Appl Genet 101: 711–717.

    Article  CAS  Google Scholar 

  • Dennis ES, Gerlach WL, Peacock WJ (1980) Identical polypyrimidine–polypurine satellite DNAs in wheat and barley. Heredity 44: 349–366.

    CAS  Google Scholar 

  • Epplen JT (1988) On simple repeated GAT CA sequences in animal genomes: A critical reappraisal. J Hered 79: 409–417.

    PubMed  CAS  Google Scholar 

  • Fuchs J, Kühne M, Schubert I (1998) Assignment of linkage groups to pea chromosomes after karyotyping and gene mapping by fluorescent in situ hybridization. Chromosoma 107: 272–276.

    Article  PubMed  CAS  Google Scholar 

  • Gerlach WL, Dyer TA (1980) Sequence organization of the repeating units in the nucleus of wheat that contain 5S rDNA genes. Nucleic Acids Res 8: 4851–4865.

    Article  PubMed  CAS  Google Scholar 

  • Gortner G, Nenno M, Weising K, Zink D, Nagl W, Kahl G (1998) Chromosomal localization and distribution of SSRs and the Arabidopsis-type telomere sequence in the genome of Cicer arietinum L. Chromosome Res 6: 97–104.

    Article  PubMed  CAS  Google Scholar 

  • Hancock JM (1996) Simple sequences and the expanding genome. Bioessays 18: 421–425.

    Article  PubMed  CAS  Google Scholar 

  • Heslop-Harrison JS, Schwarzacher T, Anamthawat-Jónson K, Leitch AR, Shi M, Leitch IJ (1991) In situ hybridization with automated chromosome denaturation. Technique (J Methods Cell Mol Biol) 3: 109–116.

    Google Scholar 

  • Hudakova S, Michalek W, Presting GG, et al. (2001) Sequence organization of barley centromeres. Nucleic Acids Res 29: 5029–5035.

    Article  PubMed  CAS  Google Scholar 

  • Ijdo JW, Wells RA, Baldini A, Reeders ST (1991) Improved telomere detection using a telomere repeat probe (TTAGGG) n generated by PCR. Nucleic Acids Res 19: 4780.

    Article  PubMed  CAS  Google Scholar 

  • International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431: 931–945.

    Article  CAS  Google Scholar 

  • Jiang J, Gill BS (1994) Nonisotopic in situ hybridization and plant genome mapping: the first 10 years. Genome 37: 717–725.

    CAS  PubMed  Google Scholar 

  • Jurka J, Pethiyagoda C (1995) Simple repetitive DNA sequences from primates: compilation and analysis. J Mol Evol 40: 120–126.

    Article  PubMed  CAS  Google Scholar 

  • Kakeda K, Fukui K, Yamagata H (1991) Heterochromatic differentiation in barley chromosomes revealed by C- and N-banding techniques. Theor Appl Genet 81: 144–150.

    Article  Google Scholar 

  • Kantery RV, La Rota M, Matthews DE, Sorrells ME (2002) Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol 48: 501–510.

    Article  Google Scholar 

  • Katti MV, Ranjekar PK, Gupta VS (2001) Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol Biol Evol 18: 1161–1167.

    PubMed  CAS  Google Scholar 

  • La Rota M, Kantery RV, Yu J, Sorrells ME (2005) Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat, and barley. BMC Genomics 6: 23.

    Article  PubMed  CAS  Google Scholar 

  • Lagercrantz U, Ellegren H, Andersson L (1993) The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Res 21: 1111–1115.

    Article  PubMed  CAS  Google Scholar 

  • Leitch IJ, Heslop-Harrison JS (1993) Physical mapping of four sites of 5S rDNA sequences and one site of the alpha-amylase-2-gene in barley (Hordeum vulgare). Genome 36: 517–523.

    CAS  PubMed  Google Scholar 

  • Li Y, Korol AB, Fahima T, Nevo E (2004) Microsatellites within genes: structure, function and evolution. Mol Biol Evol 21: 991–1007.

    Article  PubMed  CAS  Google Scholar 

  • Linde-Laursen I, Heslop-Harrison JS, Shepherd KW, Taketa S (1997) The barley geneome and its relationship with the wheat genomes. A survey with an internationally agreed recommendation for barley chromosome nomenclature. Hereditas 126: 1-16.

    Article  CAS  Google Scholar 

  • Lohe AR, Hilliker AJ, Roberts PA (1993) Mapping simple repeated DNA sequences in heterochromatin of Drosophila melanogaster. Genetics 134: 1149–1174.

    PubMed  CAS  Google Scholar 

  • Lowenhaupt K, Rich A, Pardue ML (1989) Nonrandom distribution of long mono- and dinucleotide repeats in Drosophila chromosomes: correlations with dosage compensation, heterochromatin and recombination. Mol Cell Biol 9: 1173–1182.

    PubMed  CAS  Google Scholar 

  • Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30: 194–199.

    Article  PubMed  CAS  Google Scholar 

  • Nanda I, Zischler H, Epplen C, Guttenbach M, Schmid M (1991) Chromosomal organization of simple repeated DNA sequences used for DNA fingerprinting. Electrophoresis 12: 193–203.

    Article  PubMed  CAS  Google Scholar 

  • Nasuda S, Hudakova, Schubert I, Houben A, Endo TR (2005) Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci USA 102: 9842–9847.

    Article  PubMed  CAS  Google Scholar 

  • Pardue ML, Lowenhaupt K, Rich A, Nordheim A (1987) (dC-dA) n .(dG-dT) n sequences have evolutionarily conserved chromosomal locations in Drosophila with implications for roles in chromosome structure and function. EMBO J 6: 1781–1789.

    PubMed  CAS  Google Scholar 

  • Pedersen C, Linde-Laursen I (1994) Chromosomal locations of four minor rDNA loci and a marker microsatellite sequence in barley. Chromosome Res 2: 65–71.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen C, Rasmussen SK, Linde-Laursen I (1996) Genome and chromosome identification in cultivated barley and related species of the Triticeae (Poaceae) by in situ hybridization with the GAA-satellite sequence. Genome 39: 93–104.

    Article  PubMed  CAS  Google Scholar 

  • Reddy RS, Housman DE (1997) The complex pathology of trinucleotide repeats. Curr Opin Cell Biol 9: 364–372.

    Article  PubMed  CAS  Google Scholar 

  • Röder MS, Lapitan NLV, Sorrells ME, Tanksley SD (1993) Genetic and physical mapping of barley telomeres. Mol Gen Genet 238: 294–303.

    PubMed  Google Scholar 

  • Schäfer R, Ali S, Epplen JT (1986) The organization of the evolutionarily conserved GATA/GACA repeats in the mouse genome. Chromosoma 93: 502–510.

    Article  PubMed  Google Scholar 

  • Schlegel R, Gill BS (1984) N-banding analysis of rye chromosomes and the relationship between N-banded and C-banded heterochromatin. Can J Genet Cytol 26: 765–769.

    Google Scholar 

  • Schlotterer C, Tautz D (1992) Slippage synthesis of simple sequence DNA. Nucleic Acids Res 20: 211–215.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt T, Heslop-Harrison JS (1996) The physical and genomic organization of microsatellites in sugar beet. Proc Natl Acad Sci USA 93: 8761–8765.

    Article  PubMed  CAS  Google Scholar 

  • Schwarzacher T, Heslop-Harrison JS (1990) In situ hybridization to plant telomeres using synthetic oligomers. Genome 34: 317–323.

    Google Scholar 

  • Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64: 315–324.

    Google Scholar 

  • Sinden RR (1999) Trinucleotide repeats: biological implications of the DNA structures associated with disease-causing triplet repeats. Am J Hum Genet 64: 346–353.

    Article  PubMed  CAS  Google Scholar 

  • Subramanian S, Mishra RK, Singh L (2003) Genome-wide analysis of microsatellite repeats in humans: their abundance and density in specific genomic regions. Genome Biol 4: R13.

    Article  PubMed  Google Scholar 

  • Tautz D, Renz M (1984). Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12: 4127–4138.

    Article  PubMed  CAS  Google Scholar 

  • Tautz D, Schlotterer C (1994) Simple sequences. Curr Opin Genet Dev 4: 832–837.

    Article  PubMed  CAS  Google Scholar 

  • Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulagere L.) Theor Appl Genet 106: 411–422.

    PubMed  CAS  Google Scholar 

  • Toth G, Gaspari Z, Jurka J (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 10: 967–981.

    Article  PubMed  CAS  Google Scholar 

  • Tsujimoto H, Mukai Y, Akagawa K, et al. (1997) Identification of individual barley chromosomes based on repetitive sequences: conservative distribution of Afa-family repetitive sequences on chromosomes of barley and wheat. Genes Genet Syst 72: 303–309.

    Article  PubMed  CAS  Google Scholar 

  • Vosman B, Arens P (1997) Molecular characterization of GATA/GACA microsatellite repeats in tomato. Genome 40: 25–33.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angeles Cuadrado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuadrado, A., Jouve, N. The nonrandom distribution of long clusters of all possible classes of trinucleotide repeats in barley chromosomes. Chromosome Res 15, 711–720 (2007). https://doi.org/10.1007/s10577-007-1156-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-007-1156-8

Key words

Navigation