Skip to main content

Advertisement

Log in

Probing the W chromosome of the codling moth, Cydia pomonella, with sequences from microdissected sex chromatin

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The W chromosome of the codling moth, Cydia pomonella, like that of most Lepidoptera species, is heterochromatic and forms a female-specific sex chromatin body in somatic cells. We collected chromatin samples by laser microdissection from euchromatin and W-chromatin bodies. DNA from the samples was amplified by degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR) and used to prepare painting probes and start an analysis of the W-chromosome sequence composition. With fluorescence in situ hybridization (FISH), the euchromatin probe labelled all chromosomes, whereas the W-chromatin DNA proved to be a highly specific W-chromosome painting probe. For sequence analysis, DOP-PCR-generated DNA fragments were cloned, sequenced, and tested by Southern hybridization. We recovered single-copy and low-copy W-specific sequences, a sequence that was located only in the W and the Z chromosome, multi-copy sequences that were enriched in the W chromosome but occurred also elsewhere, and ubiquitous multi-copy sequences. Three of the multi-copy sequences were recognized as derived from hitherto unknown retrotransposons. The results show that our approach is feasible and that the W-chromosome composition of C. pomonella is not principally different from that of Bombyx mori or from that of Y chromosomes of several species with an XY sex-determining mechanism. The W chromosome has attracted repetitive sequences during evolution but also contains unique sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe H, Ohbayashi F, Shimada T, Sugasaki T, Kawai S, Oshiki T (1998) A complete full-length non-LTR retrotransposon, BMC1, on the W chromosome of the silkworm, Bombyx mori. Genes & Genet Syst 73:353–358

    Article  CAS  Google Scholar 

  • Abe H, Ohbayashi F, Shimada T, Sugasaki T, Kawai S, Mita K, Oshiki T (2000) Molecular structure of a novel gypsy-Ty3-like retrotransposon (Kabuki) and nested retrotransposable elements on the W chromosome of the silkworm Bombyx mori. Mol Gen Genet 263:916–924

    Article  PubMed  CAS  Google Scholar 

  • Abe H, Ohbayashi F, Sugasaki T, Kanehara M, Terada T, Shimada T, Kawai S, Mita K, Kanamori Y, Yamamoto MT, Oshiki T (2001) Two novel Pao-like retrotransposons (Kamikaze and Yamato) from the silkworm species Bombyx mori and B. mandarina: common structural features of Pao-like elements. Mol Genet Genomics 265:375–385

    Article  PubMed  CAS  Google Scholar 

  • Abe H, Mita K, Yasukochi Y, Oshiki T, Shimada T (2005) Retrotransposable elements on the W chromosome of the silkworm, Bombyx mori. Cytogenet Genome Res 110:144–151

    Article  PubMed  CAS  Google Scholar 

  • Andolfatto P, Scriber JM, Charlesworth B (2003) No association between mitochondrial DNA haplotypes and a female-limited mimicry phenotype in Papilio glaucus. Evolution 57:305–316

    PubMed  CAS  Google Scholar 

  • Berlin S, Ellegren H (2004) Chicken W: a genetically uniform chromosome in a highly variable genome. Proc Natl Acad Sci USA 101:15967–15969

    Article  PubMed  CAS  Google Scholar 

  • Blin N, Stafford DW (1976) A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res 3:2303–2308

    PubMed  CAS  Google Scholar 

  • Charlesworth B, Charlesworth D (2000) The degeneration of Y chromosomes. Philos Trans R Soc Lond Ser B 355:1563–1572

    Article  CAS  Google Scholar 

  • Chaves R, Frönicke L, Guedes-Pinto H, Wienberg J (2004) Multidirectional chromosome painting between the Hirola antelope (Damaliscus hunteri, Alcelaphini, Bovidae), sheep and human. Chromosome Res 12:495–503

    Article  PubMed  CAS  Google Scholar 

  • Davis PS, Judd BH (1995) Nucleotide sequence of the transposable element, BEL, of Drosophila melanogaster. Drosoph Inf Serv 76:134–136

    Google Scholar 

  • Ellegren H (2000) Evolution of the avian sex chromosomes and their role in sex determination. Trends Ecol Evol 15:188–192

    Article  PubMed  Google Scholar 

  • Fuková I, Nguyen P, Marec F (2005) Codling moth cytogenetics: karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes. Genome 48:1083–1092

    Article  PubMed  Google Scholar 

  • Gotter AL, Levine JD, Reppert SM (1999) Sex-linked period genes in the silkmoth, Antheraea pernyi: implications for circadian clock regulation and the evolution of sex chromosomes. Neuron 24:953–965

    Article  PubMed  CAS  Google Scholar 

  • Graves JAM (2005) Recycling the Y chromosome. Science 307:50–51

    Article  PubMed  CAS  Google Scholar 

  • Graves JAM (2006) Sex chromosome specialization and degradation in mammals. Cell 124:901–914

    Article  PubMed  CAS  Google Scholar 

  • Graves JAM, Shetty S (2001) Sex from W to Z: evolution of vertebrate sex chromosomes and sex determining genes. J Exp Zool 290:449–462

    Article  Google Scholar 

  • Grimaldi DA, Engel MS (2004) Evolution of the Insects. Cambridge University Press, New York

    Google Scholar 

  • Gvozdev VA, Kogan GL, Usakin LA (2005) The Y chromosome as a target for acquired and amplified genetic material in evolution. BioEssays 27:1256–1262

    Article  PubMed  CAS  Google Scholar 

  • Hellborg L, Ellegren H (2004) Low levels of nucleotide diversity in mammalian Y chromosomes. Mol Biol Evol 21:158–163

    Article  PubMed  CAS  Google Scholar 

  • Kawamura N (1988) The egg size determining gene, Esd, is a unique morphological marker on the W chromosome of Bombyx mori. Genetica 76:195–201

    Article  Google Scholar 

  • Kawamura N (1990) Is the egg size determining gene, Esd, on the W chromosome identical with the sex-linked giant egg gene, Ge, in the silkworm? Genetica 81:205–210

    Article  Google Scholar 

  • Kolpakov R, Bana G, Kucherov G (2003) mreps: efficient and flexible detection of tandem repeats in DNA. Nucleic Acids Res 31:3672–3678

    Article  PubMed  CAS  Google Scholar 

  • Kubickova S, Cernohorska H, Musilova P, Rubes J (2002) The use of laser microdissection for the preparation of chromosome-specific painting probes in farm animals. Chromosome Res 10:571–577

    Article  PubMed  CAS  Google Scholar 

  • Kubo Y, Okazaki S, Anzai T, Fujiwara H (2001) Structural and phylogenetic analysis of TRAS, telomeric repeat-specific non-LTR retrotransposon families in Lepidopteran insects. Mol Biol Evol 18:848–857

    PubMed  CAS  Google Scholar 

  • Jones KW, Singh L (1985) Snakes and the evolution of sex chromosomes. Trends Genet 1:55–61

    Article  Google Scholar 

  • Lockwood APM (1961) “Ringer” solutions and some notes on the physiological basis of their ionic composition. Comp Biochem Physiol 2:241–289 (in this article, GLASER’S paper of 1917 is cited; original was not seen)

    Article  PubMed  CAS  Google Scholar 

  • Lukhtanov VA (2000) Sex chromatin and sex chromosome systems in nonditrysian Lepidoptera (Insecta). J Zoolog Syst Evol Res 38:73–79

    Article  Google Scholar 

  • Marec F (1996) Synaptonemal complexes in insects. Int J Insect Morphol Embryol 25:205–233

    Article  Google Scholar 

  • Marec F, Novák K (1998) Absence of sex chromatin corresponds with a sex-chromosome univalent in females of Trichoptera. Eur J Entomol 95:197–209

    Google Scholar 

  • Marec F, Neven LG, Robinson AS, Vreysen M, Goldsmith MR, Nagaraju J, Franz G (2005) Development of genetic sexing strains in Lepidoptera: from traditional to transgenic approaches. J Econ Entomol 98:248–259

    Article  PubMed  Google Scholar 

  • Marec F, Tothová A, Sahara K, Traut W (2001) Meiotic pairing of sex chromosome fragments and its relation to atypical transmission of a sex-linked marker in Ephestia kuehniella (Insecta: Lepidoptera). Heredity 87:659–671

    Article  PubMed  CAS  Google Scholar 

  • Marsano RM, Marconi S, Moschetti R, Barsanti P, Caggese C, Caizzi R (2004) MAX, a novel retrotransposon of the BEL-Pao family, is nested within the Bari1 cluster at the heterochromatic h39 region of chromosome 2 in Drosophila melanogaster. Mol Genet Genomics 270:477–484

    Article  PubMed  CAS  Google Scholar 

  • Mediouni J, Fuková I, Frydrychová R, Dhouibi MH, Marec F (2004) Karyotype, sex chromatin and sex chromosome differentiation in the carob moth, Ectomyelois ceratoniae (Lepidoptera: Pyralidae). Caryologia 57:184–194

    Google Scholar 

  • Ohbayashi F, Shimada T, Sugasaki T, Kawai S, Mita K, Oshiki T, Abe H (1998) Molecular structure of the copia-like retrotransposable element Yokozuna on the W chromosome of the silkworm, Bombyx mori. Genes & Genet Syst 73:345–352

    Article  CAS  Google Scholar 

  • Ohbayashi F, Suzuki MG, Shimada T (2002) Sex determination in Bombyx mori. Curr Sci (Bangalore) 83:466–471

    CAS  Google Scholar 

  • Pask A, Graves JAM (1999) Sex chromosomes and sex-determining genes: insights from marsupials and monotremes. Cell Mol Life Sci 55:864–875

    Article  PubMed  CAS  Google Scholar 

  • Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448

    Article  PubMed  CAS  Google Scholar 

  • Pigozzi MI (1999) Origin and evolution of the sex chromosomes in birds. Biocell 23:79–95

    PubMed  CAS  Google Scholar 

  • Sahara K, Marec F, Eickhoff U, Traut W (2003a) Moth sex chromatin probed by comparative genomic hybridization (CGH). Genome 46:339–342

    Article  PubMed  CAS  Google Scholar 

  • Sahara K, Yoshido A, Kawamura N, Ohnuma A, Abe H, Mita K, Oshiki T, Shimada T, Asano S, Bando H, Yasukochi Y (2003b) W-derived BAC probes as a new tool for identification of the W chromosome and its aberrations in Bombyx mori. Chromosoma 112:48–55

    Article  PubMed  CAS  Google Scholar 

  • Schartl M (2004) Sex chromosome evolution in non-mammalian vertebrates. Curr Opin Genet Dev 14:634–641

    Article  PubMed  CAS  Google Scholar 

  • Scherer G, Tschudi C, Perera J, Delius H, Pirrotta V (1982) B104, a new dispersed repeated gene family in Drosophila melanogaster and its analogies with retroviruses. J Mol Biol 157:435–451

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Steinlein C (2001) Sex chromosomes, sex-linked genes, and sex determination in the vertebrate class Amphibia. In: Scherer G, Schmid M (eds) Genes and mechanisms in vertebrate sex determination. Birkhäuser Verlag, Basel, Switzerland, pp 143–176

    Google Scholar 

  • Scriber JM, Evans MH (1987) An exceptional case of paternal transmission of the dark form female trait in the tiger swallowtail butterfly, Papilio glaucus (Lepidoptera: Papilionidae). J Res Lepid 25:110–120

    Google Scholar 

  • Scriber JM, Hagen RH, Lederhouse RC (1996) Genetics of mimicry in the tiger swallowtail butterflies, Papilio glaucus and P. canadensis (Lepidoptera: Papilionidae). Evolution 50:222–236

    Article  Google Scholar 

  • Špakulová M, Casanova JC (2004) Current knowledge on B chromosomes in natural populations of helminth parasites: a review. Cytogenet Genome Res 106:222–229

    Article  PubMed  Google Scholar 

  • Stanyon R, Bigoni F, Slaby T, Muller S, Stone G, Bonvicino CR, Neusser M, Seuánez HN (2004) Multi-directional chromosome painting maps homologies between species belonging to three genera of New World monkeys and humans. Chromosoma 113:305–315

    Article  PubMed  CAS  Google Scholar 

  • Steinemann S, Steinemann M (2005) Y chromosomes: born to be destroyed. BioEssays 27:1076–1083

    Article  PubMed  CAS  Google Scholar 

  • Traut W (1999) The evolution of sex chromosomes in insects: differentiation of sex chromosomes in flies and moths. Eur J Entomol 96:227–235

    Google Scholar 

  • Traut W, Marec F (1996) Sex chromatin in Lepidoptera. Q Rev Biol 71:239–256

    Article  PubMed  CAS  Google Scholar 

  • Traut W, Marec F (1997) Sex chromosome differentiation in some species of Lepidoptera (Insecta). Chromosome Res 5:283–291

    Article  PubMed  CAS  Google Scholar 

  • Traut W, Scholz D (1978) Structure, replication and transcriptional activity of the sex-specific heterochromatin in a moth. Exp Cell Res 113:85–94

    Article  PubMed  CAS  Google Scholar 

  • Traut W, Sahara K, Otto TD, Marec F (1999) Molecular differentiation of sex chromosomes probed by comparative genomic hybridization. Chromosoma 108:173–180

    Article  PubMed  CAS  Google Scholar 

  • Virkki N, Mazzella C, Denton A (1991) Silver staining of the coleopteran Xyp sex bivalent. Cytobios 67:45–63

    Google Scholar 

  • Vyskot B, Hobza R (2004) Gender in plants: sex chromosomes are emerging from the fog. Trends Genet 20:432–438

    Article  PubMed  CAS  Google Scholar 

  • Wallace H, Badawy GMI, Wallace BMN (1999) Amphibian sex determination and sex reversal. Cell Mol Life Sci 55:901–909

    Article  PubMed  CAS  Google Scholar 

  • Weith A, Traut W (1986) Synaptic adjustment, non-homologous pairing, and non-pairing of homologous segments in sex chromosome mutants of Ephestia kuehniella (Insecta, Lepidoptera). Chromosoma 94:125–131

    Article  Google Scholar 

  • Willhoeft U, Mueller-Navia J, Franz G (1998) Analysis of the sex chromosomes of the Mediterranean fruit fly by microdissected DNA probes. Genome 41:74–78

    Article  CAS  Google Scholar 

  • Yoshido A, Bando H, Yasukochi Y, Sahara K (2005) The Bombyx mori karyotype and the assignment of linkage groups. Genetics 170:675–685

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Our thanks are due to Dr. Ken Sahara (Hokkaido University, Sapporo, Japan) for KAIKOBLAST search. The technical assistance of Marie Korchová (Institute of Entomology, České Budějovice, Czech Republic), Heidemarie Riechers and Constanze Reuter (Insitut für Biologie, Universität zu Lübeck, Germany) is highly appreciated. This work was funded from the Entomology Institute project Z50070508, by Research Contract No. 12055/R of the International Atomic Energy Agency, Vienna, Austria, and by grants A6007307 of the Grant Agency of the Academy of Sciences of the Czech Republic (till 2005) and 206/06/1860 of the Grant Agency of the Czech Republic (since 2006), both Prague. I. F. and M. V. acknowledge the support of their Ph.D. program from the grant 521/03/H160 of the Grant Agency of the Czech Republic. S. K. was supported from a project MZE 0002716201 of the Grant Agency of the Ministry of Agriculture of the Czech Republic, Prague.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to František Marec.

Additional information

Communicated by E. A. Nigg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuková, I., Traut, W., Vítková, M. et al. Probing the W chromosome of the codling moth, Cydia pomonella, with sequences from microdissected sex chromatin. Chromosoma 116, 135–145 (2007). https://doi.org/10.1007/s00412-006-0086-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-006-0086-0

Keywords

Navigation