Skip to main content

Cytology and DNA Content Variation of Capsicum Genomes

  • Chapter
  • First Online:
The Capsicum Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Chromosome data and characterization by fluorescent banding, silver nucleolar organizer region staining (AgNOR), and fluorescence in situ hybridization (FISH) are compiled in this chapter, together with estimations of nuclear DNA content of Capsicum species. To date, the diploid chromosome number of 77.8% of the species in the genus has been recorded. The chromosome number distinguishes two groups of species, one with 2n = 2x = 24 and the other with 2n = 2x = 26. Only two clades, Andean and Atlantic Forest, possess the chromosome number of 2n = 26. A physical chromosome map with heterochromatin distribution besides 5S and active and inactive 45S ribosomal genes (rDNA) of 12 Capsicum taxa was constructed using fluorescent banding, AgNOR and FISH. The chromosome banding pattern with fluorochromes chromomycin A3 and 4′-6-diamidino-2-phenylindole (CMA/DAPI) reveals number of bands, distribution and content of heterochromatin, and FISH reports the localization of 5S and active and inactive 45S rDNA. Both methods are specific and, together with morphological characters, are instrumental for identifying taxa in Capsicum. AgNOR method informs the number, size, and position of just active NORs. Additionally, nuclear DNA content was estimated for nine diploid species of Capsicum by flow cytometry. Genome size displays significant variation between but not within species and contributes to their taxonomic grouping.

The Author E. A. Moscone was deceased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baeza C, Schrader O (2005) Comparative karyotype analysis in Haplopappus Cass. and Grindelia Willd. (Asteraceae) by double FISH with rRNA specific genes. Plant Syst Evol 251:161–172

    Article  CAS  Google Scholar 

  • Barboza GE, Bianchetti LB (2005) Three new species of Capsicum (Solanaceae) and a key to the wild species from Brazil. Syst Bot 30(4):863–871

    Article  Google Scholar 

  • Barboza GE, Agra MF, Romero MV, Scaldaferro MA, Moscone EA (2011) New endemic species of Capsicum (Solanaceae) from the Brazilian caatinga: comparison with the re-circumscribed C. parvifolium. Syst Bot 36(3):768–781

    Google Scholar 

  • Battaglia E (1955) Chromosome morphology and terminology. Caryologia 8:179–187

    Article  Google Scholar 

  • Bennett MD, Leitch IJ (1995) Nuclear DNA amounts in angiosperms. Ann Bot 76:85–91

    Article  Google Scholar 

  • Berg C, Greilhuber J (1993) Cold-sensitive chromosome regions and heterochromatin in Cestrum (Solanaceae): C. srtigillatum, C. fasciculatum, and C. elegans. Plant Syst Evol 185:133–151

    Article  Google Scholar 

  • Bloom SE, Goodpasture C (1976) An improved technique for selective silver staining of nucleolar organizer regions in human chromosomes. Hum Genet 34:199–206. https://doi.org/10.1007/BF00278889 PMID:63440

    Article  CAS  PubMed  Google Scholar 

  • Bosland PW (1996) Capsicums: innovative use of an ancient crop. In: Janick J (ed) Progress in new crops. ASHS Press, Arlington, pp 479–487

    Google Scholar 

  • Bosland PW, Votava EJ (2000) Peppers: vegetable and spice Capsicums. Crops production science in horticulture 12. CAB Intl Publishing, Wallingford, UK, p 204

    Google Scholar 

  • Buggs RJA, Chamala S, Wu W, Tate JA, Schnable PS, Soltis DE, Soltis PS, Barbazuk WB (2012) Rapid, repeated, and clustered loss of duplicate genes in allopolyploid plant populations of independent origin. Curr Biol 22:248–252

    Article  CAS  Google Scholar 

  • Burger EC, Knälmann M (1980) Koinzidenz von Feulgen-Achromasie, in situ hybridisierung und silberbandenfärbung in vier nukleolusorganisatoren von Vicia sativa. Eur J Cell Biol 21:313–318

    CAS  PubMed  Google Scholar 

  • Carrizo García C, Barfuss MHJ, Sehr EM Barboza GE, Samuel R, Moscone EA, Ehrendorfer F (2016) Phylogenetic relationships, diversification and expansion of chili peppers (Capsicum, Solanaceae). Ann Bot 118:35–51

    Google Scholar 

  • Datson PM, Murray BG (2006) Ribosomal DNA locus evolution in Nemesia: transposition rather than structural rearrangement as the key mechanism? Chromosome Res 14:845–857

    Article  CAS  Google Scholar 

  • Dubcovsky J, Dvorák J (1995) Ribosomal RNA multigene loci: nomads of the triticeae genomes. Genetics 140:1367–1377

    Google Scholar 

  • Egan AN, Schlueter J, Spooner DM (2012) Applications of next-generation sequencing in plant biology. Am J Bot 99:175–185

    Article  CAS  Google Scholar 

  • Eshbaugh WH (1980) The taxonomy of the genus Capsicum (Solanaceae). Phytologia 47(3):153–165

    Article  Google Scholar 

  • Eshbaugh WH (1993) History and exploitation of a serendipitous new crop discovery. In: Janick J, Simon JE (eds) New crops. Wiley, New York, pp 132–139

    Google Scholar 

  • Flavell RB (1986) Repetitive DNA and chromosome evolution in plants. Philos T R Soc Lon B 312:227–242

    Article  CAS  Google Scholar 

  • García S, Garnatje T, McArthur ED, Pellicer J, Siljak-Yakovlev S, Vallès J (2009) Ribosomal DNA, heterochromatin, and correlation with genome size in diploid and polyploid North American endemic sagebrushes (Artemisia, Asteraceae). Genome 52:1012–1024

    Google Scholar 

  • Greilhuber J (1995) Chromosomes of the monocotyledons (general aspects). In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds) Monocotyledons: systematics and evolution. Royal Botanic Gardens, Kew, pp 379–414

    Google Scholar 

  • Hall KJ, Parker JS (1995) Stable chromosome fission associated with rDNA mobility. Chromosome Res 3:417–422

    Article  CAS  Google Scholar 

  • Harrison N, Kidner CA (2011) Next-generation sequencing and systematics: what can a billion base pairs of DNA sequence data do for you? Taxon 60:1552–1566

    Google Scholar 

  • Hizume M, Tanaka A, Shigematsu H (1982) Detection of nucleolar organizing regions in the chromosomes of Nigella damacena [i.e. damascena]. Experientia 38:238–239

    Article  Google Scholar 

  • Hunziker AT (1971) Estudios sobre Solanaceae. VII. Contribución al conocimiento de Capsicum y géneros afines (Witheringia; Acnistus, Aihenaea, etc.). Tercera parte. Kurtziana 6:241–259

    Google Scholar 

  • Hunziker AT (2001) Genera solanacearum: the genera of Solanaceae illustrated, arranged according to a new system. ARG Gantner Verlag K-G, Liechtenstein

    Google Scholar 

  • International Board for Plant Genetic Resources (IBPGR) (1983) Genetic resources of Capsicum, a global plan of action. IBPGR Executive Secretariat, Rome, Italy

    Google Scholar 

  • Kodama Y, Yoshida MC, Sasaki M (1980) An improved silver staining technique for nucleolus organizer regions by using nylon cloth. Jap J Hum Genet 25:229–233. https://doi.org/10.1007/BF01997700

    Article  CAS  PubMed  Google Scholar 

  • Kovarik A, Dadejova M, Lim YK, Chase MW, Clarkson JJ, Knapp S, Leitch AR (2008) Evolution of rDNA in Nicotiana allopolyploids: a potential link between rDNA homogenization and epigenetics. Ann Bot 101:815–823

    Article  CAS  Google Scholar 

  • Lefebvre V, Pflieger S, Thabuis A, Caranta C, Blattes A, Chauvet J-C, Daubeze AM, Palloix A (2002) Towards the saturation of the pepper linkage map by alignment of three intraspecific maps including known-function genes. Genome 45:839–854

    Article  CAS  Google Scholar 

  • Linde-Laursen IB (1984) Nucleolus organizer polymorphism in barley, Hordeurn vulgare L. Hereditas 100:33–43

    Article  Google Scholar 

  • Lippert LF, Smith PG, Bergh BO (1966) Cytogenetics of the vegetable crops. Garden pepper, Capsicum sp. Bot Rev (Lancaster) 32:24–55

    Article  Google Scholar 

  • Livingstone KD, Lackney VK, Blauth JR, van Wijk R, Jahn MK (1999) Genome mapping in Capsicum and the evolution of genome structure in the Solanaceae. Genetics 152:1183–1202

    Google Scholar 

  • Macas J, Kejnovský E, Neumann P, Novak P, Koblížková A, Vyskot B (2011) Next generation sequencing-based analysis of repetitive DNA in the model dioceous plant Silene latifolia. PLoS ONE 6:e27335

    Article  CAS  Google Scholar 

  • Moscone EA (1990) Chromosome studies on Capsicum (Solanaceae) I. Karyotype analysis in C. chacoënse. Brittonia 42:147–154

    Article  Google Scholar 

  • Moscone EA (1993) Estudios cromosómicos en Capsicum (Solanaceae) II. Análisis cariotípico en C. parvifolium y C. annuum var. annuum. Kurtziana 22:9–18

    Google Scholar 

  • Moscone EA (1999) Análisis cariotípico en Capsicum baccatum var. umbilicatum (Solanaceae) mediante bandeos AgNOR y de fluorescencia. Kurtziana 27:225–232

    Google Scholar 

  • Moscone EA, Lambrou M, Hunziker AT, Ehrendorfer F (1993) Giemsa C-banded karyotypes in Capsicum (Solanaceae). Plant Syst Evol 186:213–229

    Article  Google Scholar 

  • Moscone EA, Loidl J, Ehrendorfer F, Hunziker AT (1995) Analysis of active nucleolus organizing regions in Capsicum (Solanaceae) by silver staining. Am J Bot 82:276–287

    Article  Google Scholar 

  • Moscone EA, Lambrou M, Ehrendorfer F (1996a) Fluorescent chromosome banding in the cultivated species of Capsicum (Solanaceae). Plant Syst Evol 202:37–63

    Article  Google Scholar 

  • Moscone EA, Matzke MA, Matzke AJM (1996b) The use of combined FISH/GISH in conjunction with DAPI counterstaining to identify chromosomes containing transgene inserts in amphidiploid tobacco. Chromosoma 105:231–236

    Article  CAS  Google Scholar 

  • Moscone EA, Klein F, Lambrou M, Fuchs J, Schweizer D (1999) Quantitative karyotyping and dual-color FISH mapping of 5S and 18S-25S rDNA probes in the cultivated Phaseolus species (Leguminosae). Genome 42:1224–1233

    Google Scholar 

  • Moscone EA, Baranyi M, Ebert I, Greilhuber J, Ehrendorfer F, Hunziker AT (2003) Analysis of nuclear DNA content in Capsicum (Solanaceae) by flow cytometry and Feulgen densitometry. Ann Bot 92:21–29

    Article  Google Scholar 

  • Moscone EA, Scaldaferro MA, Grabiele M, Cecchini NM, Sanchez García Y, Jarret R, Daviña JR, Ducasse DA, Barboza GE, Ehrendorfer F (2007) The evolution of chili peppers (Capsicum – Solanaceae): a cytogenetic perspective. Proc PAA/Solanaceae Conf Acta Hortic 745:137–169 (International Society for Horticultural Science, Leuvem, Belgium, ISSN 0567-7572)

    Google Scholar 

  • Olmstead RG, Bohs L, Migid HA, Santiago-Valentin E, Garcia VF, Collier SM (2008) A molecular phylogeny of Solanaceae. Taxon 57:1159–1181

    Google Scholar 

  • Paran I, van der Voort JR, Lefebvre V, Jahn M, Landry L, van Schriek M, Tanyolac B, Caranta C, Ben Chaim A, Livingstone K, Palloix A, Peleman J (2004). An integrated genetic linkage map of pepper (Capsicum spp.). Mol Breed 13:251–261

    Google Scholar 

  • Park Y-K, Park K-C, Park C-H, Kim N-S (2000) Chromosomal localization and sequence variation of 5S rRNA gene in five Capsicum species. Mol Cells 10:18–24

    Google Scholar 

  • Park M, Park J, Kim S, Kwon J‐K, Park HM, Bae IH, Yang T‐J, Lee Y‐H, Kang B‐C, Choi D (2012) Evolution of the large genome in Capsicum annuum occurred through accumulation of single-type long terminal repeat retrotransposons and their derivatives. Plant J https://doi.org/10.1111/j.1365-313x.2011.04851.x

  • Perry DR, Zarrillo S, Holst I, Pearsall DM, Piperno DR, Berman MJ, Cooke RG, Rademaker K, Ranere AJ, Raymond JS, Sandweiss DH, Scaramelli F, Tarble K, Zeidler JA (2007) Starch fossils and the domestication and dispersal of chili peppers (Capsicum spp. L.) in the Americas. Science 315:986–988

    Article  CAS  Google Scholar 

  • Pickersgill B (1971) Relationships between weedy and cultivated forms in some species of chili peppers (genus Capsicum). Evolution 25:683–691

    PubMed  Google Scholar 

  • Pickersgill B (1977) Taxonomy and the origin and evolution of cultivated plants in the New World. Nature 268:591–595

    Article  Google Scholar 

  • Pickersgill B (1984) Migration of chili peppers, Capsicum spp, in the Americas. In: Store P (ed) Pré-Columbian plant migration. Papers of the Peabody Museum of archaelogy and ethnology 76. Harvard University Press, Cambridge, pp 105–123

    Google Scholar 

  • Pickersgill B (1991) Cytogenetics and evolution of Capsicum L. In: Tsuchiya T, Gupta PK (eds) Chromosome engineering in plants: genetics, breeding, evolution. Part B. Elsevier, Amsterdam, pp 139–160

    Google Scholar 

  • Pickersgill B (1997) Genetic resources and breeding of Capsicum spp. Euphytica 96:129–133

    Article  Google Scholar 

  • Piperno DR (2011) The origins of plant cultivation and domestication in the new world tropics. Patterns, process, and new developments. Curr Anthropol 52:S453–470 https://doi.org/10.1086/659998 (The Wenner-Gren Foundation for Anthropological Research)

  • Pozzobon MT, Schifino-Wittmann MT, Bianchetti LB (2006) Chromosome numbers in wild and semidomesticated Brazilian Capsicum L. (Solanaceae) species: do x = 12 and x = 13 represent two evolutionary lines? Bot J Linn Soc 151:259–269

    Article  Google Scholar 

  • Qin C, Yu (2014) Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc Nat Acad Sci USA 111(14):5135–5140

    Google Scholar 

  • Raina SN, Bisht MS (1988) DNA amounts and chromatin compactness in Vicia. Genetica 77:65–77

    Article  Google Scholar 

  • Raina SN, Khoshoo TN (1971) Cytogenetics of tropical bulbous ornamentals III: mitotic mosaicism in 3x Crinum augustum. Theor Appl Genet 41:375–378

    Article  CAS  Google Scholar 

  • Raina SN, Mukai Y (1999) Detection of a variable number of 18S–5.8S–26S and 5S ribosomal DNA loci by fluorescence in situ hybridisation in diploid and tetraploid Arachis species. Genome 42:52–59

    Google Scholar 

  • Raskina O, Belyayev A, Nevo E (2004) Activity of the En/Spm-like transposons in meiosis as a base for chromosome repatterning in a small, isolated, peripheral population of Aegilops speltoides Tausch. Chromosome Res 12:153–161

    Google Scholar 

  • Romero-da Cruz MV, Urdampilleta JD, Forni Martins ER, Moscone EA (2016) Cytogenetic markers for the characterization of Capsicum annuum L. cultivars. Plant Biosyst https://doi.org/10.1080/11263504.2015.1103798

  • Särkinen T, Bohs L, Olmstead RG, Knapp S (2013) A phylogenetic framework for evolutionary study of the nightshades (Solanaceae): a dated 1000-tip tree. BMC Evol Biol 13:214

    Article  Google Scholar 

  • Scaldaferro MA, Seijo GJ, Acosta MC, Barboza GE, Ducasse DA, Moscone EA (2006) Genomic characterization of the germplasm in peppers (Capsicum—Solanaceae) by fluorescent in situ hybridization. Plant Sci 43(4):291–297 (National Centre for Agrarian Sciences, Sofia, Bulgaria; ISSN 0568-465X)

    Google Scholar 

  • Scaldaferro MA, Barboza GE, Moscone EA (2011) Estudios citogenéticos en especies andinas silvestres de Capsicum (Solanaceae). In: Sociedad Argentina de Genética (ed) XL Congreso Argentino de Genética, III Simposio Latinoamericano de Citogenética y Evolución, I Jornadas Regionales SAG-NEA. Corrientes, Argentina, Sept 2011. J Basic Appl Genet XLI:31

    Google Scholar 

  • Scaldaferro MA, Grabiele M, Moscone EA (2013) Heterochromatin type, amount and distribution in wild species of chili peppers (Capsicum-Solanaceae). Genet Res Crop Evol 60(2):693–709. https://doi.org/10.1007/s10722-012-9867-x

    Article  CAS  Google Scholar 

  • Scaldaferro MA, Romero da Cruz MV, Cecchini NM, Moscone EA (2016) FISH and AgNor-mapping of the 45S and 5S rRNA genes in wild and cultivated Capsicum species (Solananceae). Genome 59:95–113. https://doi.org/10.1139/gen-2015-0099

    Article  CAS  PubMed  Google Scholar 

  • Scaldaferro MA, Barboza GE, Acosta MC (2018) Evolutionary history of the chili pepper Capsicum baccatum L. (Solanaceae): domestication in South America and natural diversification in the Seasonally Dry Tropical Forests. Biol J Linn Soc 124(3):466–478 https://doi.org/10.1093/biolinnean/bly062

  • Sharma S, Raina SN (2005) Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes. Cytogenet Genome Res 109:15–26

    Article  CAS  Google Scholar 

  • Sinclair JH, Brown DD (1971) Retention of common nucleotide sequences in the ribosomal deoxyribonucleic acid of eukaryotes and some of their physical characteristics. Biochemistry 10:2761–2769

    Article  CAS  Google Scholar 

  • Stewart C Jr, Mazourek M, Stellari GM, O’Connell M, Jahn M (2007) Genetic control of pungency in C. chinense via the Pun1 locus. J Exp Bot 58(5):979–991

    Google Scholar 

  • Stewart C Jr, Kang B-C, Liu K, Mazourek M, Moore SL, Yoo EY, Kim B-D, Paran I, Jahn MM (2005) The Pun1 gene for pungency in pepper encodes a putative acyltransferase. Plant J 42:675–688

    Article  CAS  Google Scholar 

  • Tewksbury JJ, Manchego C, Haak DC, Levey DJ (2006) Where did the chili get its spice? Biogeography of capsaicinoid production in ancestral wild chili species. J Chem Ecol 32:547–564

    Article  CAS  Google Scholar 

  • Tong N, Bosland PW (2003) Observations on interspecific compatibility and meiotic chromosome behavior of Capsicum buforum and C. lanceolatum. Genet Res Crop Evol 50:193–199

    Article  CAS  Google Scholar 

  • Xu YH, Yang F, Cheng YL, Ma L, Wang JB, Li LJ (2007) Comparative analysis of rDNA distribution in metaphase chromosomes of Cucurbitaceae species. Hereditas 29:614–620

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Scaldaferro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Scaldaferro, M.A., Moscone, E.A. (2019). Cytology and DNA Content Variation of Capsicum Genomes. In: Ramchiary, N., Kole, C. (eds) The Capsicum Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-97217-6_4

Download citation

Publish with us

Policies and ethics