Skip to main content
Log in

The synaptonemal complex and meiotic recombination in humans: new approaches to old questions

  • Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Meiotic prophase serves as an arena for the interplay of two important cellular activities, meiotic recombination and synapsis of homologous chromosomes. Synapsis is mediated by the synaptonemal complex (SC), originally characterized as a structure linked to pairing of meiotic chromosomes (Moses (1958) J Biophys Biochem Cytol 4:633–638). In 1975, the first electron micrographs of human pachytene stage SCs were presented (Moses et al. (1975) Science 187:363–365) and over the next 15 years the importance of the SC to normal meiotic progression in human males and females was established (Jhanwar and Chaganti (1980) Hum Genet 54:405–408; Pathak and Elder (1980) Hum Genet 54:171–175; Solari (1980) Chromosoma 81:315–337; Speed (1984) Hum Genet 66:176–180; Wallace and Hulten (1985) Ann Hum Genet 49(Pt 3):215–226). Further, these studies made it clear that abnormalities in the assembly or maintenance of the SC were an important contributor to human infertility (Chaganti et al. (1980) Am J Hum Genet 32:833–848; Vidal et al. (1982) Hum Genet 60:301–304; Bojko (1983) Carlsberg Res Commun 48:285–305; Bojko (1985) Carlsberg Res Commun 50:43–72; Templado et al. (1984) Hum Genet 67:162–165; Navarro et al. (1986) Hum Reprod 1:523–527; Garcia et al. (1989) Hum Genet 2:147–53). However, the utility of these early studies was limited by lack of information on the structural composition of the SC and the identity of other SC-associated proteins. Fortunately, studies of the past 15 years have gone a long way toward remedying this problem. In this minireview, we highlight the most important of these advances as they pertain to human meiosis, focusing on temporal aspects of SC assembly, the relationship between the SC and meiotic recombination, and the contribution of SC abnormalities to human infertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson LK, Reeves A, Webb LM, Ashley T (1999) Distribution of crossing over on mouse synaptonemal complexes using immunofluorescent localization of MLH1 protein. Genetics 151:1569–1579

    PubMed  CAS  Google Scholar 

  • Ashley T (2004) The mouse “tool box” for meiotic studies. Cytogenet Genome Res 105:166–171

    Article  PubMed  CAS  Google Scholar 

  • Baker SM, Bronner CE, Zhang L, Plug AW, Robatzek M, Warren G, Elliott EA, Yu J, Ashley T, Arnheim N, Flavell RA, Liskay RM (1995) Male mice defective in the DNA mismatch repair gene PMS2 exhibit abnormal chromosome synapsis in meiosis. Cell 82:309–319

    Article  PubMed  CAS  Google Scholar 

  • Baker SM, Plug AW, Prolla TA, Bronner CE, Harris AC, Yao X, Christie DM, Monell C, Arnheim N, Bradley A, Ashley T, Liskay RM (1996) Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nat Genet 13:336–342

    Article  PubMed  CAS  Google Scholar 

  • Barlow AL, Hulten MA (1998) Crossing over analysis at pachytene in man. Eur J Hum Genet 6:350–358

    Article  PubMed  CAS  Google Scholar 

  • Barlow AL, Benson FE, West SC, Hulten MA (1997) Distribution of the Rad51 recombinase in human and mouse spermatocytes. EMBO J 16:5207–5215

    Article  PubMed  CAS  Google Scholar 

  • Bishop DK, Zickler D (2004) Early decision; meiotic crossover interference prior to stable strand exchange and synapsis. Cell 117:9–15

    Article  PubMed  CAS  Google Scholar 

  • Bojko M (1983) Human meiosis VIII: chromosome pairing and formation of the synaptonemal complex in oocytes. Carlsberg Res Commun 48:285–305

    Article  Google Scholar 

  • Bojko M (1985) Human meiosis IX: crossing over and chiasma formation in oocytes. Carlsberg Res Commun 50:43–72

    Article  Google Scholar 

  • Broman KW, Murray JC, Sheffield VC, White RL, Weber JL (1998) Comprehensive human genetic maps: individual and sex-specific variation in recombination. Am J Hum Genet 63:861–869

    Article  PubMed  CAS  Google Scholar 

  • Brown PW, Judis L, Chan ER, Schwartz S, Seftel A, Thomas A, Hassold TJ (2005) Meiotic synapsis proceeds from a limited number of subtelomeric sites in the human male. Am J Hum Genet 77:556–566

    Article  PubMed  CAS  Google Scholar 

  • Chaganti RS, Jhanwar SC, Ehrenbard LT, Kourides IA, Williams JJ (1980) Genetically determined asynapsis, spermatogenic degeneration, and infertility in men. Am J Hum Genet 32:833–848

    PubMed  CAS  Google Scholar 

  • Christensen GL, Ivanov IP, Atkins JF, Mielnik A, Schlegel PN, Carrell DT (2005) Screening the SPO11 and EIF5A2 genes in a population of infertile men. Fertil Steril 84:758–760

    Article  PubMed  CAS  Google Scholar 

  • Cohen PE, Pollard JW (2001) Regulation of meiotic recombination and prophase I progression in mammals. Bioessays 23:996–1009

    Article  PubMed  CAS  Google Scholar 

  • Colaiacovo MP, MacQueen AJ, Martinez-Perez E, McDonald K, Adamo A, La Volpe A, Villeneuve AM (2003) Synaptonemal complex assembly in C. elegans is dispensable for loading strand-exchange proteins but critical for proper completion of recombination. Dev Cell 3:463–474

    Article  Google Scholar 

  • Cooke HJ, Saunders PT (2002) Mouse models of male infertility. Nat Rev Genet 3:790–801

    Article  PubMed  CAS  Google Scholar 

  • Dernburg AF, McDonald K, Moulder G, Barstead R, Dresser M, Villeneuve AM (1998) Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 94:387–398

    Article  PubMed  CAS  Google Scholar 

  • Dobson MJ, Pearlman RE, Karaiskakis A, Spyropoulos B, Moens PB (1994) Synaptonemal complex proteins: occurrence, epitope mapping and chromosome disjunction. J Cell Sci 107(Pt 10):2749–2760

    PubMed  CAS  Google Scholar 

  • Eichenlaub-Ritter U (2005) Mouse genetic models for aneuploidy induction in germ cells. Cytogenet Genome Res 111:392–400

    Article  PubMed  CAS  Google Scholar 

  • Eijpe M, Heyting C, Gross B, Jessberger R (2000a) Association of mammalian SMC1 and SMC3 proteins with meiotic chromosomes and synaptonemal complexes. J Cell Sci 113(Pt 4):673–682

    PubMed  CAS  Google Scholar 

  • Eijpe M, Offenberg H, Goedecke W, Heyting C (2000b) Localisation of RAD50 and MRE11 in spermatocyte nuclei of mouse and rat. Chromosoma 109:123–132

    Article  PubMed  CAS  Google Scholar 

  • Eijpe M, Offenberg H, Jessberger R, Revenkova E, Heyting C (2003) Meiotic cohesin REC8 marks the axial elements of rat synaptonemal complexes before cohesins SMC1beta and SMC3. J Cell Biol 160:657–670

    Article  PubMed  CAS  Google Scholar 

  • Garcia M, Dietrich A, Pujol R, Egozcue J (1989) Nucleolar structures in chromosome and SC preparations from human oocytes at first meiotic prophase. Hum Genet 2:147–153

    Article  Google Scholar 

  • Gibson J, Tapper W, Zhang W, Morton N, Collins A (2005) Cosmopolitan linkage disequilibrium maps. Hum Genomics 2:20–27

    PubMed  CAS  Google Scholar 

  • Gonsalves J, Sun F, Schlegel PN, Turek PJ, Hopps CV, Greene C, Martin RH, Pera RA (2004) Defective recombination in infertile men. Hum Mol Genet 13:2875–2883

    Article  PubMed  CAS  Google Scholar 

  • Hamer G, Roepers-Gajadien HL, van Duyn-Goedhart A, Gademan IS, Kal HB, van Buul PP, de Rooij DG (2003) DNA double-strand breaks and gamma-H2AX signaling in the testis. Biol Reprod 68:628–634

    Article  PubMed  CAS  Google Scholar 

  • Hassold T, Merrill M, Adkins K, Freeman S, Sherman S (1995) Recombination and maternal age-dependent nondisjunction: molecular studies of trisomy 16. Am J Hum Genet 57:867–874

    PubMed  CAS  Google Scholar 

  • Hassold T, Judis L, Chan ER, Schwartz S, Seftel A, Lynn A (2004) Cytological studies of meiotic recombination in human males. Cytogenet Genome Res 107:249–255

    Article  PubMed  CAS  Google Scholar 

  • Hulten M (1974) Chiasma distribution at diakinesis in the normal human male. Hereditas 76:55–78

    PubMed  CAS  Google Scholar 

  • Jang JK, Sherizen DE, Bhagat R, Manheim EA, McKim KS (2003) Relationship of DNA double-strand breaks to synapsis in Drosophila. J Cell Sci 116:3069–3077

    Article  PubMed  CAS  Google Scholar 

  • Jhanwar SC, Chaganti RS (1980) Silver-stained synaptonemal complexes of human pachytene bivalents studied by light microscopy. Hum Genet 54:405–408

    Article  PubMed  CAS  Google Scholar 

  • Jorgenson E, Tang H, Gadde M, Province M, Leppert M, Kardia S, Schork N, Cooper R, Rao DC, Boerwinkle E, Risch N (2005) Ethnicity and human genetic linkage maps. Am J Hum Genet 76:276–290

    Article  PubMed  CAS  Google Scholar 

  • Judis L, Chan ER, Schwartz S, Seftel A, Hassold T (2004) Meiosis I arrest and azoospermia in an infertile male explained by failure of formation of a component of the synaptonemal complex. Fertil Steril 81:205–209

    Article  PubMed  Google Scholar 

  • Kerrebrock AW, Miyazaki WY, Birnby D, Orr-Weaver TL (1992) The Drosophila mei-S332 gene promotes sister-chromatid cohesion in meiosis following kinetochore differentiation. Genetics 130:827–841

    PubMed  CAS  Google Scholar 

  • Kleckner N (1996) Meiosis: how could it work? Proc Natl Acad Sci U S A 93:8167–8174

    Article  PubMed  CAS  Google Scholar 

  • Kleckner N, Storlazzi A, Zickler D (2003) Coordinate variation in meiotic pachytene SC length and total crossover/chiasma frequency under conditions of constant DNA length. Trends Genet 19:623–628

    Article  PubMed  CAS  Google Scholar 

  • Kong A, Gudbjartsson DF, Sainz J, Jonsdottir GM, Gudjonsson SA, Richardsson B, Sigurdardottir S, Barnard J, Hallbeck B, Masson G, Shlien A, Palsson ST, Frigge ML, Thorgeirsson TE, Gulcher JR, Stefansson K (2002) A high-resolution recombination map of the human genome. Nat Genet 31:241–247

    PubMed  CAS  Google Scholar 

  • Kong X, Murphy K, Raj T, He C, White PS, Matise TC (2004) A combined linkage-physical map of the human genome. Am J Hum Genet 75:1143–1148

    Article  PubMed  CAS  Google Scholar 

  • Krogh BO, Symington LS (2004) Recombination proteins in yeast. Annu Rev Genet 38:233–271

    Article  PubMed  CAS  Google Scholar 

  • Laurie DA, Hulten MA (1985a) Further studies on bivalent chiasma frequency in human males with normal karyotypes. Ann Hum Genet 49(Pt 3):189–201

    Article  PubMed  CAS  Google Scholar 

  • Laurie DA, Hulten MA (1985b) Further studies on chiasma distribution and interference in the human male. Ann Hum Genet 49(Pt 3):203–214

    Article  PubMed  CAS  Google Scholar 

  • Laurie DA, Hulten M, Jones GH (1981) Chiasma frequency and distribution in a sample of human males: chromosomes 1, 2, and 9. Cytogenet Cell Genet 31:153–166

    Article  PubMed  CAS  Google Scholar 

  • Lenzi ML, Smith J, Snowden T, Kim M, Fishel R, Poulos BK, Cohen PE (2005) Extreme heterogeneity in the molecular events leading to the establishment of chiasmata during meiosis I in human oocytes. Am J Hum Genet 76:112–127

    Article  PubMed  CAS  Google Scholar 

  • Lynn A, Koehler KE, Judis L, Chan ER, Cherry JP, Schwartz S, Seftel A, Hunt PA, Hassold TJ (2002) Covariation of synaptonemal complex length and mammalian meiotic exchange rates. Science 296:2222–2225

    Article  PubMed  CAS  Google Scholar 

  • MacQueen AJ, Colaiacovo MP, McDonald K, Villeneuve AM (2002) Synapsis-dependent and -independent mechanisms stabilize homolog pairing during meiotic prophase in C. elegans. Genes Dev 16:2428–2442

    Article  PubMed  CAS  Google Scholar 

  • Matise TC, Perlin M, Chakravarti A (1994) Automated construction of genetic linkage maps using an expert system (MultiMap): a human genome linkage map. Nat Genet 6:384–390

    Article  PubMed  CAS  Google Scholar 

  • Matise TC, Sachidanandam R, Clark AG, Kruglyak L, Wijsman E, Kakol J, Buyske S et al. (2003) A 3.9-centimorgan-resolution human single-nucleotide polymorphism linkage map and screening set. Am J Hum Genet 73:271–284

    Article  PubMed  CAS  Google Scholar 

  • McDermott A (1973) The frequency and distribution of chiasmata in man. Ann Hum Genet 37:13–20

    Article  PubMed  CAS  Google Scholar 

  • McKim KS, Jang JK, Theurkauf WE, Hawley RS (1993) Mechanical basis of meiotic metaphase arrest. Nature 362:364–366

    Article  PubMed  CAS  Google Scholar 

  • McKim KS, Jang JK, Manheim EA (2002) Meiotic recombination and chromosome segregation in Drosophila females. Annu Rev Genet 36:205–232

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto T, Hasuike S, Yogev L, Maduro MR, Ishikawa M, Westphal H, Lamb DJ (2003) Azoospermia in patients heterozygous for a mutation in SYCP3. Lancet 362:1714–1719

    Article  PubMed  CAS  Google Scholar 

  • Moens PB (1995) Histones H1 and H4 of surface-spread meiotic chromosomes. Chromosoma 104:169–174

    Article  PubMed  CAS  Google Scholar 

  • Moens PB, Spyropoulos B (1995) Immunocytology of chiasmata and chromosomal disjunction at mouse meiosis. Chromosoma 104:175–182

    Article  PubMed  CAS  Google Scholar 

  • Moens PB, Heyting C, Dietrich AJ, van Raamsdonk W, Chen Q (1987) Synaptonemal complex antigen location and conservation. J Cell Biol 105:93–103

    Article  PubMed  CAS  Google Scholar 

  • Moens PB, Pearlman RE, Heng HH, Traut W (1998) Chromosome cores and chromatin at meiotic prophase. Curr Top Dev Biol 37:241–262

    Article  PubMed  CAS  Google Scholar 

  • Mohrenweiser HW, Tsujimoto S, Gordon L, Olsen AS (1998) Regions of sex-specific hypo- and hyper-recombination identified through integration of 180 genetic markers into the metric physical map of human chromosome 19. Genomics 47:153–162

    Article  PubMed  CAS  Google Scholar 

  • Moses MJ (1958) The relation between the axial complex of meiotic prophase chromosomes and chromosome pairing in a salamander (Plethodon cinereus). J Biophys Biochem Cytol 4:633–638

    Article  PubMed  CAS  Google Scholar 

  • Moses MJ, Counce SJ, Paulson DF (1975) Synaptonemal complex complement of man in spreads of spermatocytes, with details of the sex chromosome pair. Science 187:363–365

    Article  PubMed  CAS  Google Scholar 

  • Murakami H, Nurse P (2000) DNA replication and damage checkpoints and meiotic cell cycle controls in the fission and budding yeasts. Biochem J 349:1–12

    Article  PubMed  CAS  Google Scholar 

  • Myers S, Bottolo L, Freeman C, McVean G, Donnelly P (2005) A fine-scale map of recombination rates and hotspots across the human genome. Science 310:321–324

    Article  PubMed  CAS  Google Scholar 

  • Navarro J, Vidal F, Templado C, Benet J, Marina S, Pomerol JM, Egozcue J (1986) Meiotic chromosome studies and synaptonemal complex analyses by light and electron microscopy in 47 infertile or sterile males. Hum Reprod 1:523–527

    PubMed  CAS  Google Scholar 

  • Nievergelt CM, Smith DW, Kohlenberg JB, Schork NJ (2004) Large-scale integration of human genetic and physical maps. Genome Res 14:1199–1205

    Article  PubMed  CAS  Google Scholar 

  • Offenberg HH, Schalk JA, Meuwissen RL, van Aalderen M, Kester HA, Dietrich AJ, Heyting C (1998) SCP2: a major protein component of the axial elements of synaptonemal complexes of the rat. Nucleic Acids Res 26:2572–2579

    Article  PubMed  CAS  Google Scholar 

  • Oliver-Bonet M, Turek PJ, Sun F, Ko E, Martin RH (2005) Temporal progression of recombination in human males. Mol Hum Reprod 11:517–522

    Article  PubMed  CAS  Google Scholar 

  • Padmore R, Cao L, Kleckner N (1991) Temporal comparison of recombination and synaptonemal complex formation during meiosis in S. cerevisiae. Cell 66:1239–1256

    Article  PubMed  CAS  Google Scholar 

  • Pasierbek P, Jantsch M, Melcher M, Schleiffer A, Schweizer D, Loidl J (2001) A Caenorhabditis elegans cohesion protein with functions in meiotic chromosome pairing and disjunction. Genes Dev 15:1349–1360

    Article  PubMed  CAS  Google Scholar 

  • Pathak S, Elder FF (1980) Silver-stained accessory structures on human sex chromosomes. Hum Genet 54:171–175

    Article  PubMed  CAS  Google Scholar 

  • Pineda-Krch M, Redfield RJ (2005) Persistence and loss of meiotic recombination hotspots. Genetics 169:2319–2333

    Article  PubMed  CAS  Google Scholar 

  • Plug AW, Peters AH, Keegan KS, Hoekstra MF, de Boer P, Ashley T (1998) Changes in protein composition of meiotic nodules during mammalian meiosis. J Cell Sci 111(Pt 4):413–423

    PubMed  CAS  Google Scholar 

  • Prieto I, Tease C, Pezzi N, Buesa JM, Ortega S, Kremer L, Martinez A, Martinez AC, Hulten MA, Barbero JL (2004) Cohesin component dynamics during meiotic prophase I in mammalian oocytes. Chromosome Res 12:197–213

    Article  PubMed  CAS  Google Scholar 

  • Revenkova E, Eijpe M, Heyting C, Hodges CA, Hunt PA, Liebe B, Scherthan H, Jessberger R (2004) Cohesin SMC1 beta is required for meiotic chromosome dynamics, sister chromatid cohesion and DNA recombination. Nat Cell Biol 6:555–562

    Article  PubMed  CAS  Google Scholar 

  • Roeder GS (1995) Sex and the single cell: meiosis in yeast. Proc Natl Acad Sci U S A 92:10450–10456

    Article  PubMed  CAS  Google Scholar 

  • Roeder GS, Bailis JM (2000) The pachytene checkpoint. Trends Genet 16:395–403

    Article  PubMed  CAS  Google Scholar 

  • Roig I, Liebe B, Egozcue J, Cabero L, Garcia M, Scherthan H (2004) Female-specific features of recombinational double-stranded DNA repair in relation to synapsis and telomere dynamics in human oocytes. Chromosoma 113:22–33

    Article  PubMed  CAS  Google Scholar 

  • de Rooij DG, de Boer P (2003) Specific arrests of spermatogenesis in genetically modified and mutant mice. Cytogenet Genome Res 103:267–276

    Article  PubMed  Google Scholar 

  • Schalk JA, Dietrich AJ, Vink AC, Offenberg HH, van Aalderen M, Heyting C (1998) Localization of SCP2 and SCP3 protein molecules within synaptonemal complexes of the rat. Chromosoma 107:540–548

    Article  PubMed  CAS  Google Scholar 

  • Scherthan H (2003) Knockout mice provide novel insights into meiotic chromosome and telomere dynamics. Cytogenet Genome Res 103:235–244

    Article  PubMed  CAS  Google Scholar 

  • Serre D, Nadon R, Hudson TJ (2005) Large-scale recombination rate patterns are conserved among human populations. Genome Res 15:1547–1552

    Article  PubMed  CAS  Google Scholar 

  • Siomos MF, Badrinath A, Pasierbek P, Livingstone D, White J, Glotzer M, Nasmyth K (2001) Separase is required for chromosome segregation during meiosis I in Caenorhabditis elegans. Curr Biol 11:1825–1835

    Article  PubMed  CAS  Google Scholar 

  • Solari AJ (1980) Synaptosomal complexes and associated structures in microspread human spermatocytes. Chromosoma 81:315–337

    Article  PubMed  CAS  Google Scholar 

  • Solari AJ (2002) Primitive forms of meiosis: the possible evolution of meiosis. Biocell 26:1–13

    PubMed  Google Scholar 

  • Speed RM (1984) Meiotic configurations in female trisomy 21 foetuses. Hum Genet 66:176–180

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Treco D, Schultes NP, Szostak JW (1989) Double-strand breaks at an initiation site for meiotic gene conversion. Nature 338:87–90

    Article  PubMed  CAS  Google Scholar 

  • Sun F, Kozak G, Scott S, Trpkov K, Ko E, Mikhaail-Philips M, Bestor TH, Moens P, Martin RH (2004) Meiotic defects in a man with non-obstructive azoospermia: case report. Hum Reprod 19:1770–1773

    Article  PubMed  CAS  Google Scholar 

  • Sun F, Oliver-Bonet M, Liehr T, Starke H, Trpkov K, Ko E, Rademaker A, Martin RH (2005a) Discontinuities and unsynapsed regions in meiotic chromosomes have a cis effect on meiotic recombination patterns in normal human males. Hum Mol Genet 14(20):3013-3018

    Article  PubMed  CAS  Google Scholar 

  • Sun F, Trpkov K, Rademaker A, Ko E, Martin RH (2005b) Variation in meiotic recombination frequencies among human males. Hum Genet 116:172–178

    Article  PubMed  CAS  Google Scholar 

  • Tarsounas M, Morita T, Pearlman RE, Moens PB (1999) RAD51 and DMC1 form mixed complexes associated with mouse meiotic chromosome cores and synaptonemal complexes. J Cell Biol 147:207–220

    Article  PubMed  CAS  Google Scholar 

  • Tease C, Hulten MA (2004) Inter-sex variation in synaptonemal complex lengths largely determine the different recombination rates in male and female germ cells. Cytogenet Genome Res 107:208–215

    Article  PubMed  CAS  Google Scholar 

  • Tease C, Hartshorne GM, Hulten MA (2002) Patterns of meiotic recombination in human fetal oocytes. Am J Hum Genet 70:1469–1479

    Article  PubMed  CAS  Google Scholar 

  • Templado C, Vidal F, Navarro J, Marina S, Egozcue J (1984) Meiotic studies and synaptonemal complex analysis in two infertile males with a 13/14 balanced translocation. Hum Genet 67:162–165

    Article  PubMed  CAS  Google Scholar 

  • Theurkauf WE, Hawley RS (1992) Meiotic spindle assembly in Drosophila females: behavior of nonexchange chromosomes and the effects of mutations in the nod kinesin-like protein. J Cell Biol 116:1167–1180

    Article  PubMed  CAS  Google Scholar 

  • Vidal F, Templado C, Navarro J, Brusadin S, Marina S, Egozcue J (1982) Meiotic and synaptonemal complex studies in 45 subfertile males. Hum Genet 60:301–304

    Article  PubMed  CAS  Google Scholar 

  • Wallace BM, Hulten MA (1985) Meiotic chromosome pairing in the normal human female. Ann Hum Genet 49(Pt 3):215–226

    Article  PubMed  CAS  Google Scholar 

  • Wei K, Kucherlapati R, Edelmann W (2002) Mouse models for human DNA mismatch-repair gene defects. Trends Mol Med 8:346–353

    Article  PubMed  CAS  Google Scholar 

  • Weiner BM, Kleckner N (1994) Chromosome pairing via multiple interstitial interactions before and during meiosis in yeast. Cell 77:977–991

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto A, Hiraoka Y (2001) How do meiotic chromosomes meet their homologous partners? Lessons from fission yeast. Bioessays 23:526–533

    Article  PubMed  CAS  Google Scholar 

  • Zickler D, Kleckner N (1999) Meiotic chromosomes: integrating structure and function. Annu Rev Genet 33:603–754

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Work conducted in the Hassold and Cheng laboratories as discussed in this review was supported by NIH grant HD21341.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rhea U. Vallente.

Additional information

Communicated by R. Benavente

The synaptonemal complex–50 years

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vallente, R.U., Cheng, E.Y. & Hassold, T.J. The synaptonemal complex and meiotic recombination in humans: new approaches to old questions. Chromosoma 115, 241–249 (2006). https://doi.org/10.1007/s00412-006-0058-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-006-0058-4

Keywords

Navigation