Skip to main content
Log in

Characterization of a knock-out mutation at the Gc2 locus in wheat

  • Original Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Gametocidal (Gc) genes, introduced into common wheat from related Aegilops species, are selfish genetic elements that ensure their preferential transmission by inducing chromosomal breaks. Here we report the production and characterization of a knock-out mutation of the Gc2 gene transferred to wheat as a wheat-Aegilops sharonensis T4B-4Ssh#l translocation chromosome. In hemizygous Gc2/- condition, gametophytes lacking Gc2 suffer chromosomal fragmentation and produce nonfunctional gametes, which leads to sporophytic semisterility and exclusive transmission of the Gc2-carrier chromosome. We have identified one putative ethyl methylsulfonate (EMS)-induced Gc2 mutant that restores spike fertility and shows Mendelian segregation. Progeny screening mapped the mutation to the Gc2-carrier chromosome T4B-4Ssh#l. C-banding and fluorescence in situ hybridization analyses showed that the loss of Gc2 function in the mutant is not due to a terminal deficiency. Analysis of first and second pollen mitoses in Gc2 mut/-plants and C-banding analysis of testcross progenies showed that no chromosomal breakage occurs in the mutant. No gametophytic chromosomal breakage was observed in heterozygous Gc2 mut/Gc2 plants, which had fully fertile spikes. These results suggest that Gc2 encodes two agents, one causing chromosomal breaks in gametophytes lacking Gc2 and another that protects the Gc2 carrier from breakage. The EMS-induced Gc2 mutant appears to be a knock-out of the gene encoding the ‘breaking’ agent. These data are a first crucial step toward the molecular understanding of Gc2 action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anamthawat-Jonsson K, Heslop-Harrison JS (1993) Isolation and characterization of a genome-specific DNA sequence in Triticeae species. Mol Gen Genet 240:151–158

    Article  PubMed  CAS  Google Scholar 

  • De Las Hedras JI, King IP, Parker JS (2001) 5-azacytidine induces chromosomal breakage in the root tips of wheat carrying the cuckoo chromosome 4S1 from Aegilops sharonensis. Heredity 87:474–479

    Article  Google Scholar 

  • Endo TR (1978) On the Aegilops chromosomes having gametocidal action on common wheat. In: Ramanujam S (ed) Proceedings of the 5th International Wheat Genetics Symposium, New Delhi, India, pp 306–314

  • Endo TR (1979) Selective gametocidal action of a chromosome of Aegilops cylindrica in a cultivar of common wheat. Wheat Inf Serv 50:24–28

    Google Scholar 

  • Endo TR (1982) Gametocidal chromosomes of three Aegilops species in wheat. Can J Genet Cytol 24:201–206

    Google Scholar 

  • Endo TR (1985) Two types of gametocidal chromosomes of Aegilops sharonensis and Ae. longissima. Jpn J Genet 60:125–135

    Article  Google Scholar 

  • Endo TR (1988) Induction of chromosomal structural changes by a chromosome of Aegilops cylindrica L. in common wheat. J Hered 79:366–370

    Google Scholar 

  • Endo TR (1990) Gametocidal chromosomes and their induction of chromosome mutations in wheat. Jpn J Genet 65:135–152

    Article  Google Scholar 

  • Endo TR (1996) Allocation of a gametocidal chromosome of Aegilops cylindrica to wheat homoeologous group 2. Genes Genet Syst 71:243–246

    Article  Google Scholar 

  • Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307

    CAS  Google Scholar 

  • Endo TR, Katayama Y (1978) Finding of a selectively retained chromosome of Aegilops caudata L. in common wheat. Wheat Inf Serv 47/48:32–35

    Google Scholar 

  • Endo TR, Tsunewaki K (1975) Sterility of common wheat with Aegilops triuncialis cytoplasm. J Hered 66:13–18

    Google Scholar 

  • Faris JD, Laddomada B, Gill BS (1998) Molecular mapping of segregation distortion loci in Aegilops tauschii. Genetics 149:319–327

    PubMed  CAS  Google Scholar 

  • Finch RA, Miller TE, Bennett MD (1984) “Cuckoo” Aegilops addition chromosome in wheat ensures its transmission by causing chromosome breaks in meiospores lacking it. Chromosoma 90:84–88

    Article  Google Scholar 

  • Friebe B, Gill BS (1995) Chromosome banding and genome analysis in diploid and cultivated polyploid wheats. In: Jauhar PP (ed) Methods of genome analysis in plants. CRC Press, Boca Raton, New York, London, Tokyo, pp 39–60

    Google Scholar 

  • Friebe B, Tuleen NA, Jiang J, Gill BS (1993) Standard karyotype of Triticum longissimum and its cytogenetic relationship with T. aestivum. Genome 36:731–742

    Article  PubMed  CAS  Google Scholar 

  • Friebe B, Tuleen NA, Gill BS (1999) Development and identification of a complete set of Triticum aestivum-Aegilops geniculata chromosome addition lines. Genome 42:374–380

    Article  Google Scholar 

  • Friebe B, Kynast RG, Gill BS (2000a) Gametocidal factor-induced structural rearrangements in rye chromosomes added to common wheat. Chromosome Res 8:501–511

    Article  PubMed  CAS  Google Scholar 

  • Friebe B, Qi LL, Nasuda S, Zhang P, Tuleen NA, Gill BS (2000b) Development of a complete set of Triticum aestivum-Aegilops speltoides chromosome addition lines. Theor Appl Genet 101:51–58

    Article  Google Scholar 

  • Gill BS, Friebe B, Endo TR (1991) Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome 34:830–839

    Google Scholar 

  • Hermann BG, Koschorz B, Wertz K, McLaughlin KJ, Kispert A (1999) A protein kinase encoded by the t complex responder gene causes non-mendelian inheritance. Nature 402:141–146

    Article  CAS  Google Scholar 

  • King IP, Laurie DA (1993) Chromosome damage in early embryo and endosperm development in crosses involving the preferentially transmitted 4S1 chromosome of Aegilops sharonensis. Heredity 70:52–59

    Article  Google Scholar 

  • Koebner R, Hadfield J (2001) Large-scale mutagenesis directed at specific chromosomes in wheat. Genome 44:45–49

    Article  PubMed  CAS  Google Scholar 

  • Kota RS, Dvorak J (1988) Genomic instability in wheat induced by chromosome 6B S of Triticum speltoides. Genetics 120:1085–1094

    PubMed  CAS  Google Scholar 

  • Krieg DR (1963) Ethyl-methanesulfonate-induced reversions of the bacteriophage T4rII mutants. Genetics 48:561–580

    PubMed  CAS  Google Scholar 

  • Loegering WG, Sears ER (1963) Distorted inheritance of stem-rust resistance in timstein wheat caused by a pollen killer gene. Can J Genet Cytol 5:67–72

    Google Scholar 

  • Lyttle TW (1991) Segregation distorter. Annu Rev Genet 25:511–557

    Article  PubMed  CAS  Google Scholar 

  • Lyttle TW (1993) Cheaters sometimes prosper: distortion of Mendelian segregation by meiotic drive. Trends Genet 9:205–210

    Article  Google Scholar 

  • Maan SS (1975) Exclusive preferential transmission of an alien chromosome in wheat. Crop Sci 15:287–292

    Article  Google Scholar 

  • Maguire MP (1963) High transmission frequency of a Tripsacum chromosome in corn. Genetics 4:1185–1194

    Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000a) Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442

    Article  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000b) Targeted screening for induced mutations. Nat Biotechnol 18:445–447

    Google Scholar 

  • Merrill C, Bayraktaroglu L, Kusano A, Ganetzky B (1999) Truncated RanGAP encoded by the Segregation Distorter locus of Drosophila. Science 283:1742–1745

    Article  PubMed  CAS  Google Scholar 

  • Miller TE, Hutchinson J, Chapman V (1982) Investigation of a preferentially transmitted Aegilops sharonensis chromosome in wheat. Theor Appl Genet 61:27–33

    Article  Google Scholar 

  • Morris R, Sears ER (1967) The cytogenetics of wheat and its relatives. In: Quisenberry KS, Reitz LP (eds) Wheat and wheat improvement. American Society Agronomy No. 13, Madison, Wisconsin, USA, pp 19–87

    Google Scholar 

  • Naito T, Kusano K, Kobayashi I (1995) Selfish behavior of restriction-modification systems. Science 267:897–899

    Article  PubMed  CAS  Google Scholar 

  • Nasuda S (1999) Molecular cytogenetic analysis of gametocidal genes in wheat. Ph.D thesis, Department of Plant Pathology, Kansas State University, Manhattan, Kansas, USA

    Google Scholar 

  • Nasuda S, Friebe B, Gill BS (1998) Gametocidal genes induce chromosome breakage in the interphase prior to the first mitotic cell division of the male gametophyte in wheat. Genetics 149:1115–1124

    PubMed  CAS  Google Scholar 

  • Rick CM (1966) Abortion of male and female gametes in the tomato determined by allelic interaction. Genetics 53:85–96

    PubMed  CAS  Google Scholar 

  • Sandler L, Novitsky E (1957) Meiotic drive as an evolutionary force. Am Nat 91:105–110

    Article  Google Scholar 

  • Sandler L, Hiraizumi Y, Sandler I (1959) Meiotic drive in natural populations of Drosophila melanogaster L. I. The cytogenetic basis of distortion. Genetics 44:233–250

    PubMed  CAS  Google Scholar 

  • Sano Y (1990) The genetic nature of gamete eliminator in rice. Genetics 125:183–190

    PubMed  CAS  Google Scholar 

  • Sears ER (1972) The nature of mutation in hexaploid wheat. Symp Biol Hung 12:73–82

    Google Scholar 

  • Shi F, Endo TR (1999) Genetic induction of structural changes in barley chromosomes added to common wheat by a gametocidal chromosome derived from Aegilops cylindrica. Genes Genet Syst 74:49–54

    Article  Google Scholar 

  • Shi F, Endo TR (2000) Genetic induction of chromosomal rearrangements in barley chromosome 7H added to common wheat. Chromosoma 109:358–363

    Article  PubMed  CAS  Google Scholar 

  • Silver LM (1993) The peculiar journey of a selfish chromosome: t-haplotypes and meiotic drive. Trends Genet 9:250–254

    Article  PubMed  CAS  Google Scholar 

  • Tsujimoto H (1994) Two new sources of gametocidal genes from Aegilops longissima and Ae. sharonensis. Wheat Inf Serv 79:42–46

    Google Scholar 

  • Tsujimoto H (1995) Gametocidal genes in wheat and its relatives. IV. Functional relationships between six gametocidal genes. Genome 38:283–289

    Article  PubMed  CAS  Google Scholar 

  • Tsujimoto H, Noda K (1989) Structure of chromosome 5 A of wheat speltoid mutants induced by the gametocidal genes of Aegilops speltoides. Genome 32:1085–1090

    Google Scholar 

  • Tsujimoto H, Tsunewaki K (1983) Genetic analyses of a gametocidal gene originated from Aegilops aucherri. In: Sakamoto S (ed) Proceedings 6th International Wheat Genetics Symposium, Kyoto, Japan, pp 1077–1081

  • Tsujimoto H, Tsunewaki K (1985a) Hybrid dysgenesis in common wheat caused by gametocidal genes. Jpn J Genet 60:565–578

    Article  Google Scholar 

  • Tsujimoto H, Tsunewaki K (1985b) Gametocidal genes in wheat and its relatives. II. Suppressor of chromosome 3C gametocidal gene of Aegilops triuncialis. Can J Genet Cytol 27:178–185

    Google Scholar 

  • Tsunewaki K (1980) Genetic diversity of the cytoplasms in Triticum and Aegilops. Japanese Society for the Promotion of Science, Tokyo, Japan

    Google Scholar 

  • Tsunewaki K (1993) Genome-plasmon interactions in wheat. Jpn J Genet 68:1–34

    Article  CAS  Google Scholar 

  • Williams D, Miller JD, Klindworth DL (1992) Induced mutations of a genetic suppressor of resistance to wheat stem rust. Crop Sci 32:612–616

    Google Scholar 

  • Wilson GG, Murray NE (1991) Restriction-modification systems. Annu Rev Genet 25:585–627

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Friebe B, Lukaszewski AJ, Gill BS (2001) The centromere structure in Robertsonian wheat-rye translocation chromosomes indicates that centric breakage-fusion can occur at different positions within the primary constriction. Chromosoma 110:335–344

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Friebe.

Additional information

Published online: 21 March 2003

Edited by: D. Schweizer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friebe, B., Zhang, P., Gill, B.S. et al. Characterization of a knock-out mutation at the Gc2 locus in wheat. Chromosoma 111, 509–517 (2003). https://doi.org/10.1007/s00412-003-0234-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-003-0234-8

Keywords

Navigation