Skip to main content

Advertisement

Log in

Proteomics in radiation research: present status and future perspectives

  • Review Article
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

Rapidly developing postgenome research has made proteins an attractive target for biological analysis. The well-established term of proteome is defined as the complete set of proteins expressed in a given cell, tissue or organism. Unlike the genome, a proteome is rapidly changing as it tends to adapt to microenvironmental signals. The systematic analysis of the proteome at a given time and state is referred to as proteomics. This technique provides information on the molecular and cellular mechanisms that regulate physiology and pathophysiology of the cell. Applications of proteome profiling in radiation research are increasing. However, the large-scale proteomics data sets generated need to be integrated into other fields of radiation biology to facilitate the interpretation of radiation-induced cellular and tissue effects. The aim of this review is to introduce the most recent developments in the field of radiation proteomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Gy:

Gray

ICPL:

Isotope-coded protein label

2DE:

Two-dimensional gel electrophoresis

2D-DIGE:

Two-dimensional difference gel electrophoresis

SILAC:

Stable isotope labeling with amino acids in cell culture

LC:

Liquid chromatography

MS:

Mass spectrometry

iTRAQ:

Isobaric tags for relative and absolute quantitation

SELDI-TOF:

Surface-enhanced laser desorption/ionization time-of-flight

References

  • Andreev J, Simon JP, Sabatini DD, Kam J, Plowman G, Randazzo PA, Schlessinger J (1999) Identification of a new Pyk2 target protein with Arf-GAP activity. Mol Cell Biol 19(3):2338–2350

    Google Scholar 

  • Atkinson MJ (2013) Radiation treatment effects on the proteome of the tumour microenvironment. Adv Exp Med Biol 990:49–60. doi:10.1007/978-94-007-5896-4_3

    Article  Google Scholar 

  • Azimzadeh O, Barjaktarovic Z, Aubele M, Calzada-Wack J, Sarioglu H, Atkinson MJ, Tapio S (2010) Formalin-fixed paraffin-embedded (FFPE) proteome analysis using gel-free and gel-based proteomics. J Proteome Res 9(9):4710–4720. doi:10.1021/pr1004168

    Article  Google Scholar 

  • Azimzadeh O, Scherthan H, Sarioglu H, Barjaktarovic Z, Conrad M, Vogt A, Calzada-Wack J, Neff F, Aubele M, Buske C, Atkinson MJ, Tapio S (2011) Rapid proteomic remodeling of cardiac tissue caused by total body ionizing radiation. Proteomics 11(16):3299–3311. doi:10.1002/pmic.201100178

    Article  Google Scholar 

  • Azimzadeh O, Scherthan H, Yentrapalli R, Barjaktarovic Z, Ueffing M, Conrad M, Neff F, Calzada-Wack J, Aubele M, Buske C, Atkinson MJ, Hauck SM, Tapio S (2012) Label-free protein profiling of formalin-fixed paraffin-embedded (FFPE) heart tissue reveals immediate mitochondrial impairment after ionising radiation. J Proteomics 75(8):2384–2395. doi:10.1016/j.jprot.2012.02.019

    Article  Google Scholar 

  • Azimzadeh O, Sievert W, Sarioglu H, Yentrapalli R, Barjaktarovic Z, Sriharshan A, Ueffing M, Janik D, Aichler M, Atkinson M, Multhoff G, Tapio S (2013) PPAR alpha: a novel radiation target in locally exposed Mus musculus heart revealed by quantitative proteomics. J Proteome Res. doi:10.1021/pr400071g

    Google Scholar 

  • Azzam EI, Jay-Gerin JP, Pain D (2012) Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett 327(1–2):48–60. doi:10.1016/j.canlet.2011.12.012

    Article  Google Scholar 

  • Baggerman G, Vierstraete E, De Loof A, Schoofs L (2005) Gel-based versus gel-free proteomics: a review. Comb Chem High Throughput Screen 8(8):669–677

    Article  Google Scholar 

  • Barjaktarovic Z, Schmaltz D, Shyla A, Azimzadeh O, Schulz S, Haagen J, Dorr W, Sarioglu H, Schafer A, Atkinson MJ, Zischka H, Tapio S (2011) Radiation-induced signaling results in mitochondrial impairment in mouse heart at 4 weeks after exposure to X-rays. PLoS ONE 6(12):e27811. doi:10.1371/journal.pone.0027811

    Article  ADS  Google Scholar 

  • Barjaktarovic Z, Anastasov N, Azimzadeh O, Sriharshan A, Sarioglu H, Ueffing M, Tammio H, Hakanen A, Leszczynski D, Atkinson MJ, Tapio S (2013a) Integrative proteomic and microRNA analysis of primary human coronary artery endothelial cells exposed to low-dose gamma radiation. Radiat Environ Biophys 52(1):87–98. doi:10.1007/s00411-012-0439-4

    Article  Google Scholar 

  • Barjaktarovic Z, Shyla A, Azimzadeh O, Schulz S, Haagen J, Dorr W, Sarioglu H, Atkinson MJ, Zischka H, Tapio S (2013b) Ionising radiation induces persistent alterations in the cardiac mitochondrial function of C57BL/6 mice 40 weeks after local heart exposure. Radiother Oncol J Eur Soc Therapeutic Radiol Oncol 106(3):404–410. doi:10.1016/j.radonc.2013.01.017

    Article  Google Scholar 

  • Barrett A, Jacobs A, Kohn J, Raymond J, Powles RL (1982) Changes in serum amylase and its isoenzymes after whole body irradiation. Br Med J (Clin Res Ed) 285(6336):170–171

    Article  Google Scholar 

  • Becciolini A, Giannardi G, Cionini L, Porciani S, Fallai C, Pirtoli L (1984) Plasma amylase activity as a biochemical indicator of radiation injury to salivary glands. Acta Radiol Oncol 23(1):9–14

    Article  Google Scholar 

  • Beli P, Lukashchuk N, Wagner SA, Weinert BT, Olsen JV, Baskcomb L, Mann M, Jackson SP, Choudhary C (2012) Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response. Mol Cell 46(2):212–225. doi:10.1016/j.molcel.2012.01.026

    Article  Google Scholar 

  • Bertho JM, Demarquay C, Frick J, Joubert C, Arenales S, Jacquet N, Sorokine-Durm I, Chau Q, Lopez M, Aigueperse J, Gorin NC, Gourmelon P (2001) Level of Flt3-ligand in plasma: a possible new bio-indicator for radiation-induced aplasia. Int J Radiat Biol 77(6):703–712. doi:10.1080/09553000110043711

    Article  Google Scholar 

  • Blagoev B, Kratchmarova I, Ong SE, Nielsen M, Foster LJ, Mann M (2003) A proteomics strategy to elucidate functional protein–protein interactions applied to EGF signaling. Nat Biotechnol 21(3):315–318. doi:10.1038/nbt790

    Article  Google Scholar 

  • Chaze T, Slomianny MC, Milliat F, Tarlet G, Lefebvre-Darroman T, Gourmelon P, Bey E, Benderitter M, Michalski JC, Guipaud O (2013) Alteration of the serum N-glycome of mice locally exposed to high doses of ionizing radiation. Mol Cell Proteomics 12(2):283–301. doi:10.1074/mcp.M111.014639

    Article  Google Scholar 

  • Chen G, Xu Z (2013) Global protein expression in response to extremely low frequency magnetic fields. Adv Exp Med Biol 990:107–110. doi:10.1007/978-94-007-5896-4_7

    Article  Google Scholar 

  • Chowdhury D, Choi YE, Brault ME (2013) Charity begins at home: non-coding RNA functions in DNA repair. Nat Rev Mol Cell Biol 14(3):181–189. doi:10.1038/nrm3523

    Article  Google Scholar 

  • Crenn P, Coudray-Lucas C, Thuillier F, Cynober L, Messing B (2000) Postabsorptive plasma citrulline concentration is a marker of absorptive enterocyte mass and intestinal failure in humans. Gastroenterology 119(6):1496–1505

    Article  Google Scholar 

  • Crenn P, Vahedi K, Lavergne-Slove A, Cynober L, Matuchansky C, Messing B (2003) Plasma citrulline: a marker of enterocyte mass in villous atrophy-associated small bowel disease. Gastroenterology 124(5):1210–1219

    Article  Google Scholar 

  • Daub H (2012) DNA damage response: multilevel proteomics gains momentum. Mol Cell 46(2):113–114. doi:10.1016/j.molcel.2012.04.011

    Article  Google Scholar 

  • Fragopoulou AF, Samara A, Antonelou MH, Xanthopoulou A, Papadopoulou A, Vougas K, Koutsogiannopoulou E, Anastasiadou E, Stravopodis DJ, Tsangaris GT, Margaritis LH (2012) Brain proteome response following whole body exposure of mice to mobile phone or wireless DECT base radiation. Electromagn Biol Med 31(4):250–274. doi:10.3109/15368378.2011.631068

    Article  Google Scholar 

  • Guipaud O (2013) Serum and plasma proteomics and its possible use as detector and predictor of radiation diseases. Adv Exp Med Biol 990:61–86. doi:10.1007/978-94-007-5896-4_4

    Article  Google Scholar 

  • Guipaud O, Holler V, Buard V, Tarlet G, Royer N, Vinh J, Benderitter M (2007) Time-course analysis of mouse serum proteome changes following exposure of the skin to ionizing radiation. Proteomics 7(21):3992–4002

    Article  Google Scholar 

  • Issaq HJ, Xiao Z, Veenstra TD (2007) Serum and plasma proteomics. Chem Rev 107(8):3601–3620. doi:10.1021/cr068287r

    Article  Google Scholar 

  • Kraemer A, Anastasov N, Angermeier M, Winkler K, Atkinson MJ, Moertl S (2011) MicroRNA-mediated processes are essential for the cellular radiation response. Radiat Res 176(5):575–586

    Article  Google Scholar 

  • Lacombe J, Azria D, Mange A, Solassol J (2013) Proteomic approaches to identify biomarkers predictive of radiotherapy outcomes. Expert Rev Proteomics 10(1):33–42. doi:10.1586/epr.12.68

    Article  Google Scholar 

  • Leszczynski D (2013a) Effects of radiofrequency-modulated electromagnetic fields on proteome. Adv Exp Med Biol 990:101–106. doi:10.1007/978-94-007-5896-4_6

    Article  Google Scholar 

  • Leszczynski D (2013b) Radiation proteomics: the effects of ionizing and non-ionizing radiation on cells and tissues. Adv Exp Med Biol 990. doi:10.1007/978-94-007-5896-4

  • Lim YB, Pyun BJ, Lee HJ, Jeon SR, Jin YB, Lee YS (2011) Proteomic identification of radiation response markers in mouse intestine and brain. Proteomics 11(7):1254–1263. doi:10.1002/pmic.201000332

    Article  Google Scholar 

  • Liu H, Sadygov RG, Yates JR (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76(14):4193–4201. doi:10.1021/ac0498563

    Article  Google Scholar 

  • Ma S, Liu X, Jiao B, Yang Y (2010) Low-dose radiation-induced responses: focusing on epigenetic regulation. Int J Radiat Biol 86(7):517–528. doi:10.3109/09553001003734592

    Article  Google Scholar 

  • Mann M, Jensen ON (2003) Proteomic analysis of post-translational modifications. Nat Biotechnol 21(3):255–261. doi:10.1038/nbt0303-255

    Article  Google Scholar 

  • Merrifield M, Kovalchuk O (2013) Epigenetics in radiation biology: a new research frontier. Frontiers in genetics 4:40. doi:10.3389/fgene.2013.00040

    Article  Google Scholar 

  • Miller JH, Jin S, Morgan WF, Yang A, Wan Y, Aypar U, Peters JS, Springer DL (2008) Profiling mitochondrial proteins in radiation-induced genome-unstable cell lines with persistent oxidative stress by mass spectrometry. Radiat Res 169(6):700–706. doi:10.1667/rr1186.1

    Article  Google Scholar 

  • Muller HK, Woods GM (2013) Ultraviolet radiation effects on the proteome of skin cells. Adv Exp Med Biol 990:111–119. doi:10.1007/978-94-007-5896-4_8

    Article  Google Scholar 

  • O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250(10):4007–4021

    Google Scholar 

  • Oh JH, Craft JM, Townsend R, Deasy JO, Bradley JD, El Naqa I (2011) A bioinformatics approach for biomarker identification in radiation-induced lung inflammation from limited proteomics data. J Proteome Res 10(3):1406–1415. doi:10.1021/pr101226q

    Article  Google Scholar 

  • Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR, Resing KA, Ahn NG (2005) Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics 4(10):1487–1502. doi:10.1074/mcp.M500084-MCP200

    Article  Google Scholar 

  • Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386

    Article  Google Scholar 

  • Papaioannou MD, Lagarrigue M, Vejnar CE, Rolland AD, Kuhne F, Aubry F, Schaad O, Fort A, Descombes P, Neerman-Arbez M, Guillou F, Zdobnov EM, Pineau C, Nef S (2011) Loss of Dicer in Sertoli cells has a major impact on the testicular proteome of mice. Mol Cell Proteomics: MCP 10(4):M900587MCP900200. doi:10.1074/mcp.M900587-MCP200

    Article  Google Scholar 

  • Pastila R (2013) Effects of ultraviolet radiation on skin cell proteome. Adv Exp Med Biol 990:121–127. doi:10.1007/978-94-007-5896-4_9

    Article  Google Scholar 

  • Pernot E, Hall J, Baatout S, Benotmane MA, Blanchardon E, Bouffler S, El Saghire H, Gomolka M, Guertler A, Harms-Ringdahl M, Jeggo P, Kreuzer M, Laurier D, Lindholm C, Mkacher R, Quintens R, Rothkamm K, Sabatier L, Tapio S, de Vathaire F, Cardis E (2012) Ionizing radiation biomarkers for potential use in epidemiological studies. Mutat Res 751(2):258–286. doi:10.1016/j.mrrev.2012.05.003

    Article  Google Scholar 

  • Pluder F, Barjaktarovic Z, Azimzadeh O, Mortl S, Kramer A, Steininger S, Sarioglu H, Leszczynski D, Nylund R, Hakanen A, Sriharshan A, Atkinson MJ, Tapio S (2011) Low-dose irradiation causes rapid alterations to the proteome of the human endothelial cell line EA.hy926. Radiat Environ Biophys 50(1):155–166. doi:10.1007/s00411-010-0342-9

    Article  Google Scholar 

  • Povlsen LK, Beli P, Wagner SA, Poulsen SL, Sylvestersen KB, Poulsen JW, Nielsen ML, Bekker-Jensen S, Mailand N, Choudhary C (2012) Systems-wide analysis of ubiquitylation dynamics reveals a key role for PAF15 ubiquitylation in DNA-damage bypass. Nat Cell Biol 14(10):1089–1098. doi:10.1038/ncb2579

    Article  Google Scholar 

  • Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169. doi:10.1074/mcp.M400129-MCP200

    Article  Google Scholar 

  • Sarioglu H, Brandner S, Jacobsen C, Meindl T, Schmidt A, Kellermann J, Lottspeich F, Andrae U (2006) Quantitative analysis of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced proteome alterations in 5L rat hepatoma cells using isotope-coded protein labels. Proteomics 6(8):2407–2421

    Article  Google Scholar 

  • Schmidt A, Kellermann J, Lottspeich F (2005) A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 5(1):4–15. doi:10.1002/pmic.200400873

    Article  Google Scholar 

  • Schofield PN, Tapio S, Grosche B (2010) Archiving lessons from radiobiology. Nature 468(7324):634. doi:10.1038/468634a

    Article  ADS  Google Scholar 

  • Sharma M, Moulder JE (2013) The urine proteome as a radiation biodosimeter. Adv Exp Med Biol 990:87–100. doi:10.1007/978-94-007-5896-4_5

    Article  Google Scholar 

  • Skiöld SBS, Auer G, Hellman U, Näslund I, Harms-Ringdahl M, Haghdoost S (2011) Low doses of gamma-radiation induce consistent protein expression changes in human leukocytes. Int J Low Radiat 8:374–387

    Article  Google Scholar 

  • Smith RW, Wang J, Schultke E, Seymour CB, Brauer-Krisch E, Laissue JA, Blattmann H, Mothersill CE (2013) Proteomic changes in the rat brain induced by homogenous irradiation and by the bystander effect resulting from high energy synchrotron X-ray microbeams. Int J Radiat Biol 89(2):118–127. doi:10.3109/09553002.2013.732252

    Article  Google Scholar 

  • Sriharshan A, Boldt K, Sarioglu H, Barjaktarovic Z, Azimzadeh O, Hieber L, Zitzelsberger H, Ueffing M, Atkinson MJ, Tapio S (2012) Proteomic analysis by SILAC and 2D-DIGE reveals radiation-induced endothelial response: four key pathways. J Proteomics 75(8):2319–2330. doi:10.1016/j.jprot.2012.02.009

    Article  Google Scholar 

  • Tapio S (2013) Ionizing radiation effects on cells, organelles and tissues on proteome level. Adv Exp Med Biol 990:37–48. doi:10.1007/978-94-007-5896-4_2

    Article  Google Scholar 

  • Tapio S, Hornhardt S, Gomolka M, Leszczynski D, Posch A, Thalhammer S, Atkinson MJ (2010) Use of proteomics in radiobiological research: current state of the art. Radiat Environ Biophys 49(1):1–4

    Article  Google Scholar 

  • Thomas SN, Waters KM, Morgan WF, Yang AJ, Baulch JE (2012) Quantitative proteomic analysis of mitochondrial proteins reveals prosurvival mechanisms in the perpetuation of radiation-induced genomic instability. Free Radic Biol Med 53(3):618–628. doi:10.1016/j.freeradbiomed.2012.03.025

    Article  Google Scholar 

  • Veenstra TD, Conrads TP, Hood BL, Avellino AM, Ellenbogen RG, Morrison RS (2005) Biomarkers: mining the biofluid proteome. Mol Cell Proteomics 4(4):409–418. doi:10.1074/mcp.M500006-MCP200

    Article  Google Scholar 

  • Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M, Choudhary C (2011) A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics 10(10):M111 013284. doi:10.1074/mcp.M111.013284

    Article  Google Scholar 

  • Wagner SA, Beli P, Weinert BT, Scholz C, Kelstrup CD, Young C, Nielsen ML, Olsen JV, Brakebusch C, Choudhary C (2012) Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues. Mol Cell Proteomics 11(12):1578–1585. doi:10.1074/mcp.M112.017905

    Article  Google Scholar 

  • Wu P, Zhang H, Qi L, Tang Q, Tang Y, Xie Z, Lv Y, Zhao S, Jiang W (2012) Identification of ERp29 as a biomarker for predicting nasopharyngeal carcinoma response to radiotherapy. Oncol Rep 27(4):987–994. doi:10.3892/or.2011.1586

    Google Scholar 

  • Yang F, Waters KM, Webb-Robertson BJ, Sowa MB, von Neubeck C, Aldrich JT, Markillie LM, Wirgau RM, Gritsenko MA, Zhao R, Camp DG 2nd, Smith RD, Stenoien DL (2012) Quantitative phosphoproteomics identifies filaggrin and other targets of ionizing radiation in a human skin model. Exp Dermatol 21(5):352–357. doi:10.1111/j.1600-0625.2012.01470.x

    Article  Google Scholar 

  • Yentrapalli R, Azimzadeh O, Barjaktarovic Z, Sarioglu H, Wojcik A, Harms-Ringdahl M, Atkinson MJ, Haghdoost S, Tapio S (2013) Quantitative proteomic analysis reveals induction of premature senescence in human umbilical vein endothelial cells exposed to chronic low-dose rate gamma radiation. Proteomics 13(7):1096–1107. doi:10.1002/pmic.201200463

    Article  Google Scholar 

  • Zhao Y, Jensen ON (2009) Modification-specific proteomics: strategies for characterization of post-translational modifications using enrichment techniques. Proteomics 9(20):4632–4641. doi:10.1002/pmic.200900398

    Article  Google Scholar 

  • Zhao W, Robbins ME (2009) Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications. Curr Med Chem 16(2):130–143

    Article  Google Scholar 

  • Zhu W, Smith JW, Huang C-M (2010) Mass spectrometry-based label-free quantitative proteomics. J Biomed Biotechnol. doi:10.1155/2010/840518

    Google Scholar 

Download references

Acknowledgments

This article is based on the information gained from the lectures and discussions during the 2nd International Radiation Proteomics Workshop held in Munich, January 30–31, 2013. We especially thank the scientists who authorized us to use the unpublished data mentioned in this article. Federal Office for Radiation Protection (Grant 3608S03030) and Helmholtz Zentrum München are acknowledged for their financial support to the workshop. The workshop was sponsored by SERVA, Bio-Rad, Applichem, DECODON, Qiagen and Agilent Technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soile Tapio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azimzadeh, O., Atkinson, M.J. & Tapio, S. Proteomics in radiation research: present status and future perspectives. Radiat Environ Biophys 53, 31–38 (2014). https://doi.org/10.1007/s00411-013-0495-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-013-0495-4

Keywords

Navigation