Skip to main content
Log in

Low-dose irradiation causes rapid alterations to the proteome of the human endothelial cell line EA.hy926

  • Original Paper
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

High doses of ionising radiation damage the heart by an as yet unknown mechanism. A concern for radiological protection is the recent epidemiological data indicating that doses as low as 100–500 mGy may induce cardiac damage. The aim of this study was to identify potential molecular targets and/or mechanisms involved in the pathogenesis of low-dose radiation-induced cardiovascular disease. The vascular endothelium plays a pivotal role in the regulation of cardiac function and is therefore a potential target tissue. We report here that low-dose radiation induced rapid and time-dependent changes in the cytoplasmic proteome of the human endothelial cell line EA.hy926. The proteomes were investigated at 4 and 24 h after irradiation at two different dose rates (Co-60 gamma ray total dose 200 mGy; 20 mGy/min and 190 mGy/min) using 2D-DIGE technology. Differentially expressed proteins were identified, after in-gel trypsin digestion, by MALDI-TOF/TOF tandem mass spectrometry, and peptide mass fingerprint analyses. We identified 15 significantly differentially expressed proteins, of which 10 were up-regulated and 5 down-regulated, with more than ± 1.5-fold difference compared with unexposed cells. Pathways influenced by the low-dose exposures included the Ran and RhoA pathways, fatty acid metabolism and stress response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

D-MEM:

Dulbecco’s Modified Eagle’s Medium

PMMA:

Poly(methyl methacrylate)

HAT:

Hypoxanthine Aminopterin Thymidine

SNP:

Single nucleotide polymorphism

Gy:

Gray

o/n:

Overnight

TFA:

Trifluoroacetic acid

References

  • Adams MJ, Hardenbergh PH, Constine LS, Lipshultz SE (2003) Radiation-associated cardiovascular disease. Crit Rev Oncol Hematol 45(1):55–75

    Article  Google Scholar 

  • Amundson SA, Lee RA, Koch-Paiz CA, Bittner ML, Meltzer P, Trent JM, Fornace AJ Jr (2003) Differential responses of stress genes to low dose-rate gamma irradiation. Mol Cancer Res 1(6):445–452

    Google Scholar 

  • Ashmore JP, Krewski D, Zielinski JM, Jiang H, Semenciw R, Band PR (1998) First analysis of mortality and occupational radiation exposure based on the National Dose Registry of Canada. Am J Epidemiol 148(6):564–574

    Google Scholar 

  • Ballinger SW (2005) Mitochondrial dysfunction in cardiovascular disease. Free Radic Biol Med 38(10):1278–1295

    Article  Google Scholar 

  • Bhattacharya M, Babwah AV, Ferguson SS (2004) Small GTP-binding protein-coupled receptors. Biochem Soc Trans 32(Pt 6):1040–1044

    Google Scholar 

  • Bjerke H, Jarvinen H, Grimbergen TW, Grindborg JE, Chauvenet B, Czap L, Ennow K, Moretti C, Rocha P (1998) Comparison of two methods of therapy level calibration at 60Co gamma beams. Phys Med Biol 43(10):2729–2740

    Article  Google Scholar 

  • Boerma M, Burton GR, Wang J, Fink LM, McGehee RE Jr, Hauer-Jensen M (2006) Comparative expression profiling in primary and immortalized endothelial cells: changes in gene expression in response to hydroxy methylglutaryl-coenzyme A reductase inhibition. Blood Coagul Fibrinolysis 17(3):173–180

    Article  Google Scholar 

  • Bohnsack MT, Czaplinski K, Gorlich D (2004) Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. Rna 10(2):185–191

    Article  Google Scholar 

  • Budzyn K, Sobey CG (2007) Vascular rho kinases and their potential therapeutic applications. Curr Opin Drug Discov Devel 10(5):590–596

    Google Scholar 

  • Burnette WN (1981) “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate–polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112(2):195–203

    Article  Google Scholar 

  • Davidson SM, Duchen MR (2007) Endothelial mitochondria: contributing to vascular function and disease. Circ Res 100(8):1128–1141

    Article  Google Scholar 

  • Demirci S, Nam J, Hubbs JL, Nguyen T, Marks LB (2009) Radiation-induced cardiac toxicity after therapy for breast cancer: interaction between treatment era and follow-up duration. Int J Radiat Oncol Biol Phys 73(4):980–987

    Article  Google Scholar 

  • Edgell CJ, McDonald CC, Graham JB (1983) Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc Natl Acad Sci 80(12):3734–3737

    Article  ADS  Google Scholar 

  • Falk E, Fernandez-Ortiz A (1995) Role of thrombosis in atherosclerosis and its complications. Am J Cardiol 75(6):3B–11B

    Article  Google Scholar 

  • Foley TD, Petro LA, Stredny CM, Coppa TM (2007) Oxidative inhibition of protein phosphatase 2A activity: role of catalytic subunit disulfides. Neurochem Res 32(11):1957–1964

    Article  Google Scholar 

  • Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288(5789):373–376

    Article  ADS  Google Scholar 

  • Guo R, Ma H, Gao F, Zhong L, Ren J (2009) Metallothionein alleviates oxidative stress-induced endoplasmic reticulum stress and myocardial dysfunction. J Mol Cell Cardiol 47(2):228–237

    Article  Google Scholar 

  • Heo J (2008) Redox regulation of Ran GTPase. Biochem Biophys Res Commun 376(3):568–572

    Article  Google Scholar 

  • Heo J, Campbell SL (2005) Mechanism of redox-mediated guanine nucleotide exchange on redox-active Rho GTPases. J Biol Chem 280(35):31003–31010

    Article  Google Scholar 

  • Herrera MD, Mingorance C, Rodriguez-Rodriguez R, Sotomayor MA (2009) Endothelial dysfunction and aging: an update. Ageing Res Rev 9:142–152

    Google Scholar 

  • Heukeshoven J, Dernick R (1985) Simplified method for silver staining of proteins in polyacrylamide gels and the mechanism of silver staining. Electrophoresis 6(3):103–112

    Article  Google Scholar 

  • Hoving S, Heeneman S, Gijbels MJ, te Poele JA, Russell NS, Daemen MJ, Stewart FA (2008) Single-dose and fractionated irradiation promote initiation and progression of atherosclerosis and induce an inflammatory plaque phenotype in ApoE(-/-) mice. Int J Radiat Oncol Biol Phys 71(3):848–857

    Article  Google Scholar 

  • Ivanov VK, Maksioutov MA, Chekin SY, Petrov AV, Biryukov AP, Kruglova ZG, Matyash VA, Tsyb AF, Manton KG, Kravchenko JS (2006) The risk of radiation-induced cerebrovascular disease in Chernobyl emergency workers. Health Phys 90(3):199–207

    Article  Google Scholar 

  • Jacob P, Ruhm W, Walsh L, Blettner M, Hammer G, Zeeb H (2009) Cancer risk of radiation workers larger than expected? Occup Environ Med 66:789–796

    Google Scholar 

  • Kreuzer M, Kreisheimer M, Kandel M, Schnelzer M, Tschense A, Grosche B (2006) Mortality from cardiovascular diseases in the German uranium miners cohort study, 1946–1998. Radiat Environ Biophys 45(3):159–166

    Article  Google Scholar 

  • Kuzelova K, Hrkal Z (2008) Rho-signaling pathways in chronic myelogenous leukemia. Cardiovasc Hematol Disord Drug Targets 8(4):261–267

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(259):680–685

    Article  ADS  Google Scholar 

  • Landar A, Zmijewski JW, Dickinson DA, Le Goffe C, Johnson MS, Milne GL, Zanoni G, Vidari G, Morrow JD, Darley-Usmar VM (2006) Interaction of electrophilic lipid oxidation products with mitochondria in endothelial cells and formation of reactive oxygen species. Am J Physiol Heart Circ Physiol 290(5):H1777–H1787

    Article  Google Scholar 

  • Little MP, Tawn EJ, Tzoulaki I, Wakeford R, Hildebrandt G, Paris F, Tapio S, Elliott P (2008) A systematic review of epidemiological associations between low and moderate doses of ionizing radiation and late cardiovascular effects, and their possible mechanisms. Radiat Res 169(1):99–109

    Article  Google Scholar 

  • Luscher TF, Richard V, Tschudi M, Yang ZH, Boulanger C (1990) Endothelial control of vascular tone in large and small coronary arteries. J Am Coll Cardiol 15(3):519–527

    Article  Google Scholar 

  • Malhotra JD, Kaufman RJ (2007) Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal 9(12):2277–2293

    Article  Google Scholar 

  • Malhotra JD, Miao H, Zhang K, Wolfson A, Pennathur S, Pipe SW, Kaufman RJ (2008) Antioxidants reduce endoplasmic reticulum stress and improve protein secretion. Proc Natl Acad Sci 105(47):18525–18530

    Article  ADS  Google Scholar 

  • Marsden PA, Goligorsky MS, Brenner BM (1991) Endothelial cell biology in relation to current concepts of vessel wall structure and function. J Am Soc Nephrol 1(7):931–948

    Google Scholar 

  • McGeoghegan D, Binks K, Gillies M, Jones S, Whaley S (2008) The non-cancer mortality experience of male workers at British Nuclear Fuels plc, 1946–2005. Int J Epidemiol 37(3):506–518

    Article  Google Scholar 

  • Mitchel RE, Burchart P, Wyatt H (2007) Fractionated, low-dose-rate ionizing radiation exposure and chronic ulcerative dermatitis in normal and Trp53 heterozygous C57BL/6 mice. Radiat Res 168(6):716–724

    Article  Google Scholar 

  • Nakajima T, Taki K, Wang B, Ono T, Matsumoto T, Oghiso Y, Tanaka K, Ichinohe K, Nakamura S, Tanaka S, Nenoi M (2008) Induction of rhodanese, a detoxification enzyme, in livers from mice after long-term irradiation with low-dose-rate gamma-rays. J Radiat Res (Tokyo) 49(6):661–666

    Article  Google Scholar 

  • Neuwald AF, Kannan N, Poleksic A, Hata N, Liu JS (2003) Ran’s C-terminal, basic patch, and nucleotide exchange mechanisms in light of a canonical structure for Rab, Rho, Ras, and Ran GTPases. Genome Res 13(4):673–692

    Article  Google Scholar 

  • Nylund R, Leszczynski D (2004) Proteomics analysis of human endothelial cell line EA.hy926 after exposure to GSM 900 radiation. Proteomics 4(5):1359–1365

    Article  Google Scholar 

  • Nylund R, Leszczynski D (2006) Mobile phone radiation causes changes in gene and protein expression in human endothelial cell lines and the response seems to be genome- and proteome-dependent. Proteomics 6(17):4769–4780

    Article  Google Scholar 

  • Okudaira N, Uehara Y, Fujikawa K, Kagawa N, Ootsuyama A, Norimura T, Saeki K, Nohmi T, Masumura K, Matsumoto T, Oghiso Y, Tanaka K, Ichinohe K, Nakamura S, Tanaka S, Ono T (2010) Radiation dose-rate effect on mutation induction in spleen and liver of gpt delta mice. Radiat Res 173(2):138–147

    Article  Google Scholar 

  • Preston DL, Shimizu Y, Pierce DA, Suyama A, Mabuchi K (2003) Studies of mortality of atomic bomb survivors. Report 13: solid cancer and noncancer disease mortality: 1950–1997. Radiat Res 160(4):381–407

    Article  Google Scholar 

  • Ramsby ML, Makowski GS, Khairallah EA (1994) Differential detergent fractionation of isolated hepatocytes: biochemical, immunochemical and two-dimensional gel electrophoresis characterization of cytoskeletal and noncytoskeletal compartments. Electrophoresis 15(2):265–277

    Article  Google Scholar 

  • Rodel F, Hantschel M, Hildebrandt G, Schultze-Mosgau S, Rodel C, Herrmann M, Sauer R, Voll RE (2004) Dose-dependent biphasic induction and transcriptional activity of nuclear factor kappa B (NF-kappaB) in EA.hy.926 endothelial cells after low-dose X-irradiation. Int J Radiat Biol 80(2):115–123

    Article  Google Scholar 

  • Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340(2):115–126

    Article  Google Scholar 

  • Seasholtz TM, Brown JH (2004) Rho signaling in vascular diseases. Mol Interv 4(6):348–357

    Article  Google Scholar 

  • Shimokawa H, Takeshita A (2005) Rho-kinase is an important therapeutic target in cardiovascular medicine. Arterioscler Thromb Vasc Biol 25(9):1767–1775

    Article  Google Scholar 

  • Sokolov M, Panyutin IG, Neumann R (2006) Genome-wide gene expression changes in normal human fibroblasts in response to low-LET gamma-radiation and high-LET-like 125IUdR exposures. Radiat Prot Dosimetry 122(1–4):195–201

    Google Scholar 

  • Stewart FA, Heeneman S, Te Poele J, Kruse J, Russell NS, Gijbels M, Daemen M (2006) Ionizing radiation accelerates the development of atherosclerotic lesions in ApoE-/- mice and predisposes to an inflammatory plaque phenotype prone to hemorrhage. Am J Pathol 168(2):649–658

    Article  Google Scholar 

  • Sugihara T, Murano H, Tanaka K, Oghiso Y (2008) Inverse dose-rate-effects on the expressions of extra-cellular matrix-related genes in low-dose-rate gamma-ray irradiated murine cells. J Radiat Res (Tokyo) 49(3):231–240

    Article  Google Scholar 

  • Taki K, Wang B, Nakajima T, Wu J, Ono T, Uehara Y, Matsumoto T, Oghiso Y, Tanaka K, Ichinohe K, Nakamura S, Tanaka S, Magae J, Kakimoto A, Nenoi M (2009) Microarray analysis of differentially expressed genes in the kidneys and testes of mice after long-term irradiation with low-dose-rate gamma-rays. J Radiat Res (Tokyo) 50(3):241–252

    Article  Google Scholar 

  • Tastet C, Lescuyer P, Diemer H, Luche S, van Dorsselaer A, Rabilloud T (2003) A versatile electrophoresis system for the analysis of high- and low-molecular-weight proteins. Electrophoresis 24(11):1787–1794

    Article  Google Scholar 

  • Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18(11):2071–2077

    Article  Google Scholar 

  • Wiemer EA (2007) The role of microRNAs in cancer: no small matter. Eur J Cancer 43(10):1529–1544

    Article  Google Scholar 

  • Yamada M, Wong FL, Fujiwara S, Akahoshi M, Suzuki G (2004) Noncancer disease incidence in atomic bomb survivors, 1958–1998. Radiat Res 161(6):622–632

    Article  Google Scholar 

  • Zhang DX, Gutterman DD (2007) Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. Am J Physiol Heart Circ Physiol 292(5):H2023–H2031

    Article  Google Scholar 

  • Zmijewski JW, Landar A, Watanabe N, Dickinson DA, Noguchi N, Darley-Usmar VM (2005) Cell signalling by oxidized lipids and the role of reactive oxygen species in the endothelium. Biochem Soc Trans 33(Pt 6):1385–1389

    Google Scholar 

Download references

Acknowledgments

The research leading to these results is supported by a grant from the European Community’s Seventh Framework Programme (EURATOM) contract no. 211403 (CARDIORISK). We thank Dr. Ludwig Hieber and Dr. Herbert Braselmann for giving valuable advice in statistical questions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soile Tapio.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 243 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pluder, F., Barjaktarovic, Z., Azimzadeh, O. et al. Low-dose irradiation causes rapid alterations to the proteome of the human endothelial cell line EA.hy926. Radiat Environ Biophys 50, 155–166 (2011). https://doi.org/10.1007/s00411-010-0342-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-010-0342-9

Keywords

Navigation