Skip to main content
Log in

Integrative proteomic and microRNA analysis of primary human coronary artery endothelial cells exposed to low-dose gamma radiation

  • Original Paper
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

High doses of ionising radiation significantly increase the risk of cardiovascular disease (CVD), the vascular endothelium representing one of the main targets. Whether radiation doses lower than 500 mGy induce cardiovascular damage is controversial. The aim of this study was to investigate radiation-induced expression changes on protein and microRNA (miRNA) level in primary human coronary artery endothelial cells after a single 200 mGy radiation dose (Co-60). Using a multiplex gel-based proteomics technology (2D-DIGE), we identified 28 deregulated proteins showing more than ±1.5-fold expression change in comparison with non-exposed cells. A great majority of the proteins showed up-regulation. Bioinformatics analysis indicated “cellular assembly and organisation, cellular function and maintenance and molecular transport” as the most significant radiation-responsive network. Caspase-3, a central regulator of this network, was confirmed to be up-regulated using immunoblotting. We also analysed radiation-induced alterations in the level of six miRNAs known to play a role either in CVD or in radiation response. The expression of miR-21 and miR-146b showed significant radiation-induced deregulation. Using miRNA target prediction, three proteins found differentially expressed in this study were identified as putative candidates for miR-21 regulation. A negative correlation was observed between miR-21 levels and the predicted target proteins, desmoglein 1, phosphoglucomutase and target of Myb protein. This study shows for the first time that a low-dose exposure has a significant impact on miRNA expression that is directly related to protein expression alterations. The data presented here may facilitate the discovery of low-dose biomarkers of radiation-induced cardiovascular damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

IR:

Ionising radiation

Gy:

Gray

miRNA:

microRNA

HCAEC:

Human coronary artery endothelial cells

IPA:

Ingenuity pathway analysis

DIGE:

Difference gel electrophoresis

CVD:

Cardiovascular disease

sqrt:

Square root

mirSVR:

miRNA score threshold

MS:

Mass spectrometry

2D-DIGE:

Two-dimensional difference gel electrophoresis

References

  • Adams MJ, Hardenbergh PH, Constine LS, Lipshultz SE (2003) Radiation-associated cardiovascular disease. Crit Rev Oncol Hematol 45(1):55–75

    Article  Google Scholar 

  • Allen JB, Sagerman RH, Stuart MJ (1981) Irradiation decreases vascular prostacyclin formation with no concomitant effect on platelet thromboxane production. Lancet 2(8257):1193–1196

    Article  Google Scholar 

  • Angst BD, Marcozzi C, Magee AI (2001) The cadherin superfamily. J Cell Sci 114(Pt 4):625–626

    Google Scholar 

  • Azizova TV, Muirhead CR, Druzhinina MB, Grigoryeva ES, Vlasenko EV, Sumina MV, O’Hagan JA, Zhang W, Haylock RG, Hunter N (2010) Cardiovascular diseases in the cohort of workers first employed at Mayak PA in 1948–1958. Radiat Res 174(2):155–168. doi:10.1667/rr1789.1

    Article  Google Scholar 

  • Azizova TV, Muirhead CR, Moseeva MB, Grigoryeva ES, Sumina MV, O’Hagan J, Zhang W, Haylock RJ, Hunter N (2011) Cerebrovascular diseases in nuclear workers first employed at the Mayak PA in 1948–1972. Radiat Environ Biophys 50(4):539–552. doi:10.1007/s00411-011-0377-6

    Article  Google Scholar 

  • Barjaktarovic Z, Schmaltz D, Shyla A, Azimzadeh O, Schulz S, Haagen J, Dörr W, Sarioglu H, Schäfer A, Atkinson MJ, Zischka H, Tapio S (2011) Radiation–induced signaling results in mitochondrial impairment in mouse heart at 4 weeks after exposure to X-rays. PLoS ONE 6(12):e27811. doi:10.1371/journal.pone.0027811

    Article  ADS  Google Scholar 

  • Bjerke H, Jarvinen H, Grimbergen TW, Grindborg JE, Chauvenet B, Czap L, Ennow K, Moretti C, Rocha P (1998) Comparison of two methods of therapy level calibration at 60Co gamma beams. Phys Med Biol 43(10):2729–2740

    Article  Google Scholar 

  • Burnette WN (1981) “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate–polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112(2):195–203

    Article  Google Scholar 

  • Carletti MZ, Fiedler SD, Christenson LK (2010) MicroRNA 21 blocks apoptosis in mouse periovulatory granulosa cells. Biol Reprod 83(2):286–295. doi:10.1095/biolreprod.109.081448

    Article  Google Scholar 

  • Carr ZA, Land CE, Kleinerman RA, Weinstock RW, Stovall M, Griem ML, Mabuchi K (2005) Coronary heart disease after radiotherapy for peptic ulcer disease. Int J Radiat Oncol Biol Phys 61(3):842–850

    Article  Google Scholar 

  • Caselli A, Marzocchini R, Camici G, Manao G, Moneti G, Pieraccini G, Ramponi G (1998) The inactivation mechanism of low molecular weight phosphotyrosine-protein phosphatase by H2O2. J Biol Chem 273(49):32554–32560

    Article  Google Scholar 

  • Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):e179. doi:10.1093/nar/gni178

    Article  Google Scholar 

  • Cheng Y, Zhang C (2010) MicroRNA-21 in cardiovascular disease. J Cardiovasc Transl Res 3(3):251–255. doi:10.1007/s12265-010-9169-7

    Article  Google Scholar 

  • Chevallet M, Luche S, Rabilloud T (2006) Silver staining of proteins in polyacrylamide gels. Nat Protoc 1(4):1852–1858

    Article  Google Scholar 

  • Darby S, McGale P, Peto R, Granath F, Hall P, Ekbom A (2003) Mortality from cardiovascular disease more than 10 years after radiotherapy for breast cancer: nationwide cohort study of 90,000 Swedish women. BMJ 326(7383):256–257

    Article  Google Scholar 

  • Demirci S, Nam J, Hubbs JL, Nguyen T, Marks LB (2009) Radiation-induced cardiac toxicity after therapy for breast cancer: interaction between treatment era and follow-up duration. Int J Radiat Oncol Biol Phys 73(4):980–987

    Article  Google Scholar 

  • Dusek RL, Getsios S, Chen F, Park JK, Amargo EV, Cryns VL, Green KJ (2006) The differentiation-dependent desmosomal cadherin desmoglein 1 is a novel caspase-3 target that regulates apoptosis in keratinocytes. J Biol Chem 281(6):3614–3624. doi:10.1074/jbc.M508258200

    Article  Google Scholar 

  • Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS (2003) MicroRNA targets in Drosophila. Genome Biol 5(1):R1. doi:10.1186/gb-2003-5-1-r1

    Article  Google Scholar 

  • Geiger T, Cox J, Mann M (2010) Proteomic changes resulting from gene copy number variations in cancer cells. PLoS Genet 6(9):e1001090. doi:10.1371/journal.pgen.1001090

  • Hauptmann M, Mohan AK, Doody MM, Linet MS, Mabuchi K (2003) Mortality from diseases of the circulatory system in radiologic technologists in the United States. Am J Epidemiol 157(3):239–248

    Article  Google Scholar 

  • Hoshi Y, Tanooka H, Miyazaki K, Wakasugi H (1997) Induction of thioredoxin in human lymphocytes with low-dose ionizing radiation. Biochim Biophys Acta 1359(1):65–70

    Article  Google Scholar 

  • Hoving S, Heeneman S, Gijbels MJ, te Poele JA, Russell NS, Daemen MJ, Stewart FA (2008) Single-dose and fractionated irradiation promote initiation and progression of atherosclerosis and induce an inflammatory plaque phenotype in ApoE(−/−) mice. Int J Radiat Oncol Biol Phys 71(3):848–857

    Article  Google Scholar 

  • Howe GR, Zablotska LB, Fix JJ, Egel J, Buchanan J (2004) Analysis of the mortality experience amongst U.S. nuclear power industry workers after chronic low-dose exposure to ionizing radiation. Radiat Res 162(5):517–526

    Article  Google Scholar 

  • Ivanov VK (2007) Late cancer and noncancer risks among Chernobyl emergency workers of Russia. Health Phys 93(5):470–479

    Article  Google Scholar 

  • Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74(20):5383–5392

    Article  Google Scholar 

  • Keyse SM, Emslie EA (1992) Oxidative stress and heat shock induce a human gene encoding a protein-tyrosine phosphatase. Nature 359(6396):644–647

    Article  ADS  Google Scholar 

  • Kim SJ, Peppas A, Hong SK, Yang G, Huang Y, Diaz G, Sadoshima J, Vatner DE, Vatner SF (2003) Persistent stunning induces myocardial hibernation and protection: flow/function and metabolic mechanisms. Circ Res 92(11):1233–1239. doi:10.1161/01.res.0000076892.18394.b6

    Article  Google Scholar 

  • Klier M, Anastasov N, Hermann A, Meindl T, Angermeier D, Raffeld M, Fend F, Quintanilla-Martinez L (2008) Specific lentiviral shRNA-mediated knockdown of cyclin D1 in mantle cell lymphoma has minimal effects on cell survival and reveals a regulatory circuit with cyclin D2. Leukemia 22(11):2097–2105. doi:10.1038/leu.2008.213

    Article  Google Scholar 

  • Kraemer A, Anastasov N, Angermeier M, Winkler K, Atkinson MJ, Moertl S (2011) MicroRNA-mediated processes are essential for the cellular radiation response. Radiat Res 176(5):575–586

    Article  Google Scholar 

  • Kreuzer M, Kreisheimer M, Kandel M, Schnelzer M, Tschense A, Grosche B (2006) Mortality from cardiovascular diseases in the German uranium miners cohort study, 1946–1998. Radiat Environ Biophys 45(3):159–166

    Article  Google Scholar 

  • Kreuzer M, Grosche B, Schnelzer M, Tschense A, Dufey F, Walsh L (2010) Radon and risk of death from cancer and cardiovascular diseases in the German uranium miners cohort study: follow-up 1946–2003. Radiat Environ Biophys 49(2):177–185

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(259):680–685

    Article  ADS  Google Scholar 

  • Mayburd AL, Martlinez A, Sackett D, Liu H, Shih J, Tauler J, Avis I, Mulshine JL (2006) Ingenuity network-assisted transcription profiling: identification of a new pharmacologic mechanism for MK886. Clin Cancer Res 12(6):1820–1827

    Article  Google Scholar 

  • McGeoghegan D, Binks K, Gillies M, Jones S, Whaley S (2008) The non-cancer mortality experience of male workers at British Nuclear Fuels plc, 1946–2005. Int J Epidemiol 37(3):506–518

    Article  Google Scholar 

  • Menendez JC, Casanova D, Amado JA, Salas E, Garcia-Unzueta MT, Fernandez F, de la Lastra LP, Berrazueta JR (1998) Effects of radiation on endothelial function. Int J Radiat Oncol Biol Phys 41(4):905–913

    Article  Google Scholar 

  • Muller JM, Rupec RA, Baeuerle PA (1997) Study of gene regulation by NF-kappa B and AP-1 in response to reactive oxygen intermediates. Methods 11(3):301–312. doi:10.1006/meth.1996.0424

    Article  Google Scholar 

  • Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75(17):4646–4658

    Article  Google Scholar 

  • Pluder F, Barjaktarovic Z, Azimzadeh O, Mortl S, Kramer A, Steininger S, Sarioglu H, Leszczynski D, Nylund R, Hakanen A, Sriharshan A, Atkinson MJ, Tapio S (2011) Low-dose irradiation causes rapid alterations to the proteome of the human endothelial cell line EA.hy926. Radiat Environ Biophys 50(1):155–166. doi:10.1007/s00411-010-0342-9

    Article  Google Scholar 

  • Porter AG, Janicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6(2):99–104. doi:10.1038/sj.cdd.4400476

    Article  Google Scholar 

  • Preston DL, Shimizu Y, Pierce DA, Suyama A, Mabuchi K (2003) Studies of mortality of atomic bomb survivors. Report 13: solid cancer and noncancer disease mortality: 1950–1997. Radiat Res 160(4):381–407

    Article  Google Scholar 

  • Qi F, Sugihara T, Hattori Y, Yamamoto Y, Kanno M, Abe K (1998) Functional and morphological damage of endothelium in rabbit ear artery following irradiation with cobalt60. Br J Pharmacol 123(4):653–660. doi:10.1038/sj.bjp.0701654

    Article  Google Scholar 

  • Qu Y, Wang J, Ray PS, Guo H, Huang J, Shin-Sim M, Bukoye BA, Liu B, Lee AV, Lin X, Huang P, Martens JW, Giuliano AE, Zhang N, Cheng NH, Cui X (2011) Thioredoxin-like 2 regulates human cancer cell growth and metastasis via redox homeostasis and NF-kappaB signaling. J Clin Invest 121(1):212–225. doi:10.1172/jci43144

    Article  Google Scholar 

  • Richardson DB, Wing S (1999) Radiation and mortality of workers at Oak Ridge National Laboratory: positive associations for doses received at older ages. Environ Health Perspect 107(8):649–656

    Article  Google Scholar 

  • Schulz R, Heusch G (2000) Hibernating myocardium. Heart 84(6):587–594

    Article  Google Scholar 

  • Shi Y, Zhang X, Tang X, Wang P, Wang H, Wang Y (2012) MiR-21 is continually elevated long-term in the brain after exposure to ionizing radiation. Radiat Res 177(1):124–128

    Article  Google Scholar 

  • Shimizu Y, Kodama K, Nishi N, Kasagi F, Suyama A, Soda M, Grant EJ, Sugiyama H, Sakata R, Moriwaki H, Hayashi M, Konda M, Shore RE (2010) Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950–2003. BMJ 340:b5349

    Article  Google Scholar 

  • Small EM, Olson EN (2011) Pervasive roles of microRNAs in cardiovascular biology. Nature 469(7330):336–342. doi:10.1038/nature09783

    Article  ADS  Google Scholar 

  • Soloviev AI, Tishkin SM, Parshikov AV, Ivanova IV, Goncharov EV, Gurney AM (2003) Mechanisms of endothelial dysfunction after ionized radiation: selective impairment of the nitric oxide component of endothelium-dependent vasodilation. Br J Pharmacol 138(5):837–844

    Article  Google Scholar 

  • Soloviev A, Prudnikov I, Tsyvkin V, Tishkin S, Kyrychenko S, Zelensky S, Ivanova I (2010) Electrophysiological and contractile evidence of the ability of human mesenchymal stromal cells to correct vascular malfunction in rats after ionizing irradiation. J Physiol Sci 60(2):161–172. doi:10.1007/s12576-009-0080-4

    Article  Google Scholar 

  • Soucy KG, Lim HK, Benjo A, Santhanam L, Ryoo S, Shoukas AA, Vazquez ME, Berkowitz DE (2007) Single exposure gamma-irradiation amplifies xanthine oxidase activity and induces endothelial dysfunction in rat aorta. Radiat Environ Biophys 46(2):179–186

    Article  Google Scholar 

  • Sriharshan A, Boldt K, Sarioglu H, Barjaktarovic Z, Azimzadeh O, Hieber L, Zitzelsberger H, Ueffing M, Atkinson MJ, Tapio S (2012) Proteomic analysis by SILAC and 2D-DIGE reveals radiation-induced endothelial response: four key pathways. J Proteomics (in press)

  • Sugihara T, Hattori Y, Yamamoto Y, Qi F, Ichikawa R, Sato A, Liu MY, Abe K, Kanno M (1999) Preferential impairment of nitric oxide-mediated endothelium-dependent relaxation in human cervical arteries after irradiation. Circulation 100(6):635–641

    Article  Google Scholar 

  • Swerdlow AJ, Higgins CD, Smith P, Cunningham D, Hancock BW, Horwich A, Hoskin PJ, Lister A, Radford JA, Rohatiner AZ, Linch DC (2007) Myocardial infarction mortality risk after treatment for Hodgkin disease: a collaborative British cohort study. J Natl Cancer Inst 99(3):206–214

    Article  Google Scholar 

  • Talbott EO, Youk AO, McHugh-Pemu KP, Zborowski JV (2003) Long-term follow-up of the residents of the Three Mile Island accident area: 1979–1998. Environ Health Perspect 111(3):341–348

    Article  Google Scholar 

  • Tukenova M, Guibout C, Oberlin O, Doyon F, Mousannif A, Haddy N, Guerin S, Pacquement H, Aouba A, Hawkins M, Winter D, Bourhis J, Lefkopoulos D, Diallo I, de Vathaire F (2010) Role of cancer treatment in long-term overall and cardiovascular mortality after childhood cancer. J Clin Oncol 28(8):1308–1315

    Article  Google Scholar 

  • Urbich C, Kuehbacher A, Dimmeler S (2008) Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res 79(4):581–588. doi:10.1093/cvr/cvn156

    Article  Google Scholar 

  • van Rooij E, Marshall WS, Olson EN (2008) Toward microRNA-based therapeutics for heart disease: the sense in antisense. Circ Res 103(9):919–928. doi:10.1161/circresaha.108.183426

    Article  Google Scholar 

  • Wagner-Ecker M, Schwager C, Wirkner U, Abdollahi A, Huber PE (2010) MicroRNA expression after ionizing radiation in human endothelial cells. Radiat Oncol 5:25. doi:10.1186/1748-717x-5-25

    Article  Google Scholar 

  • Witke W (2004) The role of profilin complexes in cell motility and other cellular processes. Trends Cell Biol 14(8):461–469. doi:10.1016/j.tcb.2004.07.003

    Article  Google Scholar 

  • Wu J, Liu W, Bemis A, Wang E, Qiu Y, Morris EA, Flannery CR, Yang Z (2007) Comparative proteomic characterization of articular cartilage tissue from normal donors and patients with osteoarthritis. Arthritis Rheum 56(11):3675–3684

    Article  Google Scholar 

  • Young EF, Smilenov LB (2011) Impedance-based surveillance of transient permeability changes in coronary endothelial monolayers after exposure to ionizing radiation. Radiat Res 176(4):415–424

    Article  Google Scholar 

  • Zhou X, Zhang J, Jia Q, Ren Y, Wang Y, Shi L, Liu N, Wang G, Pu P, You Y, Kang C (2010) Reduction of miR-21 induces glioma cell apoptosis via activating caspase 9 and 3. Oncol Rep 24(1):195–201

    Google Scholar 

  • Zhu Y, Yu X, Fu H, Wang H, Wang P, Zheng X, Wang Y (2010) MicroRNA-21 is involved in ionizing radiation-promoted liver carcinogenesis. Int J Clin Exp Med 3(3):211–222

    Google Scholar 

Download references

Acknowledgments

The research leading to these results is supported by a grant from the European Community’s Seventh Framework Programme (EURATOM) contract no. 211403 (CARDIORISK). We thank Prof. Wolfgang Heidenreich for valuable advice in statistical questions, and Sandra Helm, Emily Hsu and Stefanie Winkler for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zarko Barjaktarovic.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barjaktarovic, Z., Anastasov, N., Azimzadeh, O. et al. Integrative proteomic and microRNA analysis of primary human coronary artery endothelial cells exposed to low-dose gamma radiation. Radiat Environ Biophys 52, 87–98 (2013). https://doi.org/10.1007/s00411-012-0439-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-012-0439-4

Keywords

Navigation