Skip to main content

Advertisement

Log in

Identification of a microRNA (miR-663a) induced by ER stress and its target gene PLOD3 by a combined microRNome and proteome approach

  • Original Article
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Introduction

MicroRNAs (miRs) regulate gene expression to support important physiological functions. Significant evidences suggest that miRs play a crucial role in many pathological events and in the cell response to various stresses.

Methods

With the aim to identify new miRs induced by perturbation of intracellular calcium homeostasis, we analysed miR expression profiles of thapsigargin (TG)-treated cells by microarray. In order to identify miR-663a-regulated genes, we evaluated proteomic changes in miR-663a-overexpressing cells by two-dimensional differential in-gel electrophoresis coupled to mass spectrometric identification of the differentially represented proteins. Microarray and proteomic analyses were supported by biochemical validation.

Results

Results of microarray revealed 24 differentially expressed miRs; among them, miR-663a turned out to be by ER stress and under the control of the PERK pathway of the unfolded protein response. Proteomic analysis revealed that PLOD3, which is the gene encoding for collagen-modifying lysyl hydroxylase 3 (LH3), is regulated by miR-663a. Luciferase reporter assays demonstrated that miR-663a indeed reduces LH3 expression by targeting to 3′-UTR of PLOD3 mRNA. Interestingly, miR-663a inhibition of LH3 expression generates reduced extracellular accumulation of type IV collagen, thus suggesting the involvement of miR-663a in modulating collagen 4 secretion in physiological conditions and in response to ER stress.

Conclusion

The finding of the ER stress-induced PERK-miR-663a pathway may have important implications in the understanding of the molecular mechanisms underlying the function of this miR in normal and/or pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adachi Y, Yamamoto K, Okada T, Yoshida H, Harada A, Mori K. ATF6 is a transcription factor specializing in the regulation of quality control proteins in the endoplasmic reticulum. Cell Struct Funct. 2008;33(1):75–89.

    Article  CAS  PubMed  Google Scholar 

  • Afonyushkin T, Oskolkova OV, Bochkov VN. Permissive role of miR-663 in induction of VEGF and activation of the ATF4 branch of unfolded protein response in endothelial cells by oxidized phospholipids. Atherosclerosis. 2012;225(1):50–5.

    Article  CAS  PubMed  Google Scholar 

  • Amodio G, Moltedo O, Monteleone F, D’Ambrosio C, Scaloni A, Remondelli P, et al. Proteomic signatures in thapsigargin-treated hepatoma cells. Chem Res Toxicol. 2011.

  • Axten JM, Medina JR, Feng Y, Shu A, Romeril SP, Grant SW, et al. Discovery of 7-methyl-5-(1-{[3-(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-p yrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). J Med Chem. 2012;55(16):7193–207.

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP, Chen CZ. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet. 2004;5(5):396–400.

    Article  CAS  PubMed  Google Scholar 

  • Bartoszewska S, Kochan K, Madanecki P, Piotrowski A, Ochocka R, Collawn JF, et al. Regulation of the unfolded protein response by microRNAs. Cell Mol Biol Lett. 2013;18(4):555–78.

    Article  CAS  PubMed  Google Scholar 

  • Bartoszewski R, Brewer JW, Rab A, Crossman DK, Bartoszewska S, Kapoor N, et al. The unfolded protein response (UPR)-activated transcription factor X-box-binding protein 1 (XBP1) induces microRNA-346 expression that targets the human antigen peptide transporter 1 (TAP1) mRNA and governs immune regulatory genes. J Biol Chem. 2011;286(48):41862–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P, Izaurralde E. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev. 2006;20(14):1885–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belmont PJ, Chen WJ, Thuerauf DJ, Glembotski CC. Regulation of microRNA expression in the heart by the ATF6 branch of the ER stress response. J Mol Cell Cardiol. 2012;52(5):1176–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP, et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA. 2007;297(17):1901–8.

    Article  CAS  PubMed  Google Scholar 

  • Byrd AE, Brewer JW. Micro(RNA)managing endoplasmic reticulum stress. IUBMB Life. 2013;65(5):373–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature. 2002;415(6867):92–6.

    Article  CAS  PubMed  Google Scholar 

  • Callis TE, Chen JF, Wang DZ. MicroRNAs in skeletal and cardiac muscle development. DNA Cell Biol. 2007;26(4):219–25.

    Article  CAS  PubMed  Google Scholar 

  • Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004;303(5654):83–6.

    Article  CAS  PubMed  Google Scholar 

  • Cross BC, Bond PJ, Sadowski PG, Jha BK, Zak J, Goodman JM, et al. The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule. Proc Natl Acad Sci U S A. 2012;109(15):E869–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dayer C, Stamenkovic I. Recruitment of matrix metalloproteinase-9 (MMP-9) to the fibroblast cell surface by lysyl hydroxylase 3 (LH3) triggers transforming growth factor-beta (TGF-beta) activation and fibroblast differentiation. J Biol Chem. 2015;290(22):13763–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diehl JA, Fuchs SY, Koumenis C. The cell biology of the unfolded protein response. Gastroenterology. 2011;141(1):38–41. 41 e1-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006;3(2):87–98.

    Article  CAS  PubMed  Google Scholar 

  • Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harding HP, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature. 1999;397(6716):271–4.

    Article  CAS  PubMed  Google Scholar 

  • Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell. 2000;5(5):897–904.

    Article  CAS  PubMed  Google Scholar 

  • Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. 2003;11(3):619–33.

    Article  CAS  PubMed  Google Scholar 

  • Haze K, Yoshida H, Yanagi H, Yura T, Mori K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell. 1999;10(11):3787–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heikkinen J, Risteli M, Lampela O, Alavesa P, Karppinen M, Juffer AH, et al. Dimerization of human lysyl hydroxylase 3 (LH3) is mediated by the amino acids 541-547. Matrix Biol. 2011;30(1):27–33.

    Article  CAS  PubMed  Google Scholar 

  • Hetz C, Martinon F, Rodriguez D, Glimcher LH. The unfolded protein response: integrating stress signals through the stress sensor IRE1alpha. Physiol Rev. 2011;91(4):1219–43.

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Li S, Cui X, Lv X, Jiao Y, Yu F, et al. The overexpression of hypomethylated miR-663 induces chemotherapy resistance in human breast cancer cells by targeting heparin sulfate proteoglycan 2 (HSPG2). J Biol Chem. 2013;288(16):10973–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Ding L, Bennewith KL, Tong RT, Welford SM, Ang KK, et al. Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell. 2009;35(6):856–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim I, Xu W, Reed JC. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov. 2008;7(12):1013–30.

    Article  CAS  PubMed  Google Scholar 

  • Liang P, Lv C, Jiang B, Long X, Zhang P, Zhang M, et al. MicroRNA profiling in denatured dermis of deep burn patients. Burns. 2012;38(4):534–40.

    Article  PubMed  Google Scholar 

  • Lin JH, Walter P, Yen TS. Endoplasmic reticulum stress in disease pathogenesis. Annu Rev Pathol. 2008;3:399–425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Listowski MA, Heger E, Boguslawska DM, Machnicka B, Kuliczkowski K, Leluk J, et al. microRNAs: fine tuning of erythropoiesis. Cell Mol Biol Lett. 2013;18(1):34–46.

    Article  CAS  PubMed  Google Scholar 

  • Liu ZY, Zhang GL, Wang MM, Xiong YN, Cui HQ. MicroRNA-663 targets TGFB1 and regulates lung cancer proliferation. Asian Pac J Cancer Prev. 2011;12(11):2819–23.

    PubMed  Google Scholar 

  • Liu C, Cheng H, Shi S, Cui X, Yang J, Chen L, et al. MicroRNA-34b inhibits pancreatic cancer metastasis through repressing Smad3. Curr Mol Med. 2013;13(4):467–78.

    Article  CAS  PubMed  Google Scholar 

  • Lu M, Lawrence DA, Marsters S, Acosta-Alvear D, Kimmig P, Mendez AS, et al. Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis. Science. 2014;345(6192):98–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lytton J, Westlin M, Hanley MR. Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. J Biol Chem. 1991;266(26):17067–71.

    CAS  PubMed  Google Scholar 

  • Madanecki P, Kapoor N, Bebok Z, Ochocka R, Collawn JF, Bartoszewski R. Regulation of angiogenesis by hypoxia: the role of microRNA. Cell Mol Biol Lett. 2013;18(1):47–57.

    Article  CAS  PubMed  Google Scholar 

  • Mori K. Signalling pathways in the unfolded protein response: development from yeast to mammals. J Biochem. 2009;146(6):743–50.

    Article  CAS  PubMed  Google Scholar 

  • Myllyla R, Wang C, Heikkinen J, Juffer A, Lampela O, Risteli M, et al. Expanding the lysyl hydroxylase toolbox: new insights into the localization and activities of lysyl hydroxylase 3 (LH3). J Cell Physiol. 2007;212(2):323–9.

    Article  CAS  PubMed  Google Scholar 

  • Ni CW, Qiu H, Jo H. MicroRNA-663 upregulated by oscillatory shear stress plays a role in inflammatory response of endothelial cells. Am J Physiol Heart Circ Physiol. 2011;300(5):H1762–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan J, Hu H, Zhou Z, Sun L, Peng L, Yu L, et al. Tumor-suppressive mir-663 gene induces mitotic catastrophe growth arrest in human gastric cancer cells. Oncol Rep. 2010;24(1):105–12.

    CAS  PubMed  Google Scholar 

  • Pizzimenti S, Ferracin M, Sabbioni S, Toaldo C, Pettazzoni P, Dianzani MU, et al. MicroRNA expression changes during human leukemic HL-60 cell differentiation induced by 4-hydroxynonenal, a product of lipid peroxidation. Free Radic Biol Med. 2009;46(2):282–8.

    Article  CAS  PubMed  Google Scholar 

  • Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004;432(7014):226–30.

    Article  CAS  PubMed  Google Scholar 

  • Raisch J, Darfeuille-Michaud A, Nguyen HT. Role of microRNAs in the immune system, inflammation and cancer. World J Gastroenterol. 2013;19(20):2985–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rautavuoma K, Takaluoma K, Sormunen R, Myllyharju J, Kivirikko KI, Soininen R. Premature aggregation of type IV collagen and early lethality in lysyl hydroxylase 3 null mice. Proc Natl Acad Sci U S A. 2004;101(39):14120–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renna M, Caporaso MG, Bonatti S, Kaufman RJ, Remondelli P. Regulation of ERGIC-53 gene transcription in response to endoplasmic reticulum stress. J Biol Chem. 2007;282(31):22499–512.

    Article  CAS  PubMed  Google Scholar 

  • Risteli M, Ruotsalainen H, Bergmann U, Venkatraman Girija U, Wallis R, Myllyla R. Lysyl hydroxylase 3 modifies lysine residues to facilitate oligomerization of mannan-binding lectin. PLoS One. 2014;9(11):e113498.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruotsalainen H, Risteli M, Wang C, Wang Y, Karppinen M, Bergmann U, et al. The activities of lysyl hydroxylase 3 (LH3) regulate the amount and oligomerization status of adiponectin. PLoS One. 2012;7(11):e50045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sagara Y, Inesi G. Inhibition of the sarcoplasmic reticulum Ca2+ transport ATPase by thapsigargin at subnanomolar concentrations. J Biol Chem. 1991;266(21):13503–6.

    CAS  PubMed  Google Scholar 

  • Salo AM, Wang C, Sipila L, Sormunen R, Vapola M, Kervinen P, et al. Lysyl hydroxylase 3 (LH3) modifies proteins in the extracellular space, a novel mechanism for matrix remodeling. J Cell Physiol. 2006;207(3):644–53.

    Article  CAS  PubMed  Google Scholar 

  • Salo AM, Cox H, Farndon P, Moss C, Grindulis H, Risteli M, et al. A connective tissue disorder caused by mutations of the lysyl hydroxylase 3 gene. Am J Hum Genet. 2008;83(4):495–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA. 2008;299(4):425–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen X, Ellis RE, Lee K, Liu CY, Yang K, Solomon A, et al. Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell. 2001;107(7):893–903.

    Article  CAS  PubMed  Google Scholar 

  • Thastrup O, Cullen PJ, Drobak BK, Hanley MR, Dawson AP. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc Natl Acad Sci U S A. 1990;87(7):2466–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tili E, Michaille JJ, Adair B, Alder H, Limagne E, Taccioli C, et al. Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD. Carcinogenesis. 2010;31(9):1561–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varga ZV, Kupai K, Szucs G, Gaspar R, Paloczi J, Farago N, et al. MicroRNA-25-dependent up-regulation of NADPH oxidase 4 (NOX4) mediates hypercholesterolemia-induced oxidative/nitrative stress and subsequent dysfunction in the heart. J Mol Cell Cardiol. 2013;62:111–21.

    Article  CAS  PubMed  Google Scholar 

  • Vigorito E, Perks KL, Abreu-Goodger C, Bunting S, Xiang Z, Kohlhaas S, et al. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity. 2007;27(6):847–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waaijer ME, Wieser M, Grillari-Voglauer R, van Heemst D, Grillari J, Maier AB. MicroRNA-663 induction upon oxidative stress in cultured human fibroblasts depends on the chronological age of the donor. Biogerontology. 2014;15(3):269–78.

    CAS  PubMed  Google Scholar 

  • Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334(6059):1081–6.

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Luosujarvi H, Heikkinen J, Risteli M, Uitto L, Myllyla R. The third activity for lysyl hydroxylase 3: galactosylation of hydroxylysyl residues in collagens in vitro. Matrix Biol. 2002;21(7):559–66.

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Kovanen V, Raudasoja P, Eskelinen S, Pospiech H, Myllyla R. The glycosyltransferase activities of lysyl hydroxylase 3 (LH3) in the extracellular space are important for cell growth and viability. J Cell Mol Med. 2009;13(3):508–21.

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Rutkowski DT, Dubois M, Swathirajan J, Saunders T, Wang J, et al. ATF6alpha optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Dev Cell. 2007;13(3):351–64.

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Zhang R, Niu J, Cui D, Xie B, Zhang B, et al. Oxidative stress mediated-alterations of the microRNA expression profile in mouse hippocampal neurons. Int J Mol Sci. 2012;13(12):16945–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto K, Sato T, Matsui T, Sato M, Okada T, Yoshida H, et al. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev Cell. 2007;13(3):365–76.

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Rawson RB, Komuro R, Chen X, Dave UP, Prywes R, et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell. 2000;6(6):1355–64.

    Article  CAS  PubMed  Google Scholar 

  • Yi C, Wang Q, Wang L, Huang Y, Li L, Liu L, et al. MiR-663, a microRNA targeting p21(WAF1/CIP1), promotes the proliferation and tumorigenesis of nasopharyngeal carcinoma. Oncogene. 2012;31(41):4421–33.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 2001;107(7):881–91.

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Kaufman RJ. The unfolded protein response: a stress signaling pathway critical for health and disease. Neurology. 2006;66(2 Suppl 1):S102–9.

    Article  CAS  PubMed  Google Scholar 

  • Zlotorynski E. Apoptosis. DR5 unfolds ER stress. Nat Rev Mol Cell Biol. 2014;15(8):498–9.

    Google Scholar 

  • Dai BH, Geng L, Wang Y, Sui CJ, Xie F, Shen RX, et al. microRNA-199a-5p protects hepatocytes from bile acid-induced sustained endoplasmic reticulum stress. Cell Death Dis. 2013;4:e604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Università degli Studi di Salerno (FARB2013 and FARB2014 to Paolo Remondelli).

The authors thank V. A. Lasorsa for help with the graphical representation of the differential proteomic data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Remondelli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Activation of UPR markers following TG treatment in Huh7 cells. XBP1 splicing assay and RT-PCR of Bip/Grp78 and Chop mRNAs performed on Huh7 cells at different time points of TG treatment (300 nM). GAPDH was used as control of RNA recovery. (GIF 18 kb)

High Resolution Image (TIF 191 kb)

Fig. S2

qRT-PCR of miR-663a in Huh7 cells transfected with the pre-miR-663a vector. Relative expression levels of miR-663a in Huh7 cells transfected with the pre-miR-663a (pmiR-663a) or with the control vector (pmiR empty) at 48 h of expression. Fold change were calculated from 2-ΔΔCT formula. Each bar represents the mean ± SD of three independent replicates. (GIF 2 kb)

High Resolution Image (TIF 625 kb)

Fig. S3

2D-map of the proteins down-represented after miR-663a expression. The Figure shows a representative (master) gel of the 2D-DIGE experiment from Huh7 cells transfected with the pre-miR663a or with the control vector. The down-represented spots are indicated by a yellow contour. The extremes of the pH gradient used for first-dimension are reported at the top of the figure (GIF 23 kb)

High Resolution Image (TIF 2212 kb)

Fig. S4

Activation of UPR markers following TG treatment in Hek 293 cells. XBP1 splicing assay and RT-PCR of Bip/Grp78 and Chop mRNAs performed on Hek 293 cells in control condition (0) or after 8 h of TG treatment (300 nM). GAPDH served as control of RNA recovery (GIF 3 kb)

High Resolution Image (TIF 191 kb)

Fig. S5

Collagen IV and LH3 immunofluorescence in miR-663a overexpressing and TG-treated Huh7 cells. Huh7 cells seeded on glass coverslips were transfected with the GFP-expressing negative control vector (mock) or with the pre-miR-663a vector (pmiR-663a) and untreated (Untreated) or treated with 300 nM TG for 8 h (TG). Forty-eight h after transfection, coverslips were processed for immunofluorescence with collagen IV (COL IV) or LH3-specific antibodies (LH3). The smaller magnification insets shows the GFP fluorescence of transfected cells as grayscale mode (GIF 24 kb)

High Resolution Image (TIF 5353 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amodio, G., Sasso, E., D’Ambrosio, C. et al. Identification of a microRNA (miR-663a) induced by ER stress and its target gene PLOD3 by a combined microRNome and proteome approach. Cell Biol Toxicol 32, 285–303 (2016). https://doi.org/10.1007/s10565-016-9335-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-016-9335-z

Keywords

Navigation