Skip to main content
Log in

Redox-controlled iron isotope fractionation during magmatic differentiation: an example from the Red Hill intrusion, S. Tasmania

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

This study presents accurate and precise iron isotopic data for 16 co-magmatic rocks and 6 pyroxene–magnetite pairs from the classic, tholeiitic Red Hill sill in southern Tasmania. The intrusion exhibits a vertical continuum of compositions created by in situ fractional crystallisation of a single injection of magma in a closed igneous system and, as such, constitutes a natural laboratory amenable to determining the causes of Fe isotope fractionation in magmatic rocks. Early fractionation of pyroxenes and plagioclase, under conditions closed to oxygen exchange, gives rise to an iron enrichment trend and an increase in \( f_{{{\text{O}}_{2} }} \) of the melt relative to the Fayalite–Magnetite–Quartz (FMQ) buffer. Enrichment in Fe3+/ΣFemelt is mirrored by δ57Fe, where VIFe2+-bearing pyroxenes partition 57Fe-depleted iron, defining an equilibrium pyroxene-melt fractionation factor of \( \Updelta^{57} {\text{Fe}}_{{{\text{px}} - {\text{melt}}}} \le - 0.25\,\permille \times 10^{6} /T^{2} \). Upon magnetite saturation, the \( f_{{{\text{O}}_{2} }} \) and δ57Fe of the melt fall, commensurate with the sequestration of the oxidised, 57Fe-enriched iron into magnetite, quantified as \( \Updelta^{57} {\text{Fe}}_{{{\text{mtn}} - {\text{melt}}}} = + 0.20\,\permille \times 10^{6} /T^{2} \). Pyroxene–magnetite pairs reveal an equilibrium fractionation factor of \( \Updelta^{57} {\text{Fe}}_{{{\text{mtn}} - {\text{px}}}} \approx + 0.30\,\permille \) at 900–1,000 °C. Iron isotopes in differentiated magmas suggest that they may act as an indicator of their oxidation state and tectonic setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bacon CR, Macdonald R, Smith RL, Baedecker PA (1981) Pleistocene high-silica rhyolites of the Coso volcanic field, Inyo County, California. J Geophys Res 86(11):10223–10241

    Article  Google Scholar 

  • Baldridge WS, McGetchin TR, Frey FA, Jarosewich E (1973) Magmatic evolution of Hekla, Iceland. Contrib Miner Petrol 42:245–258

    Article  Google Scholar 

  • Beard BL, Johnson CM, Skulan JL, Nealson KH, Cox L, Sun H (2003) Application of Fe isotopes to tracing the geochemical and biological cycling of Fe. Chem Geol 195(1–4):87–117

    Article  Google Scholar 

  • Berndt J, Koepke J, Holtz F (2005) An Experimental Investigation of the Influence of water and oxygen fugacity on differentiation of MORB at 200 MPa. J Petrol 46(1):135–167

    Article  Google Scholar 

  • Bézos A, Humler E (2005) The Fe3+/ΣFe ratios of MORB glasses and their implications for mantle melting. Geochim Cosmochim Acta 69(3):711–725

    Article  Google Scholar 

  • Bingham P, Parker JM, Searle TM, Smith I (2007) Local structure and medium range ordering of tetrahedrally coordinated Fe3+ ions in alkali–alkaline earth–silica glasses. J Non-Cryst Solids 353(24–25):2479–2494

    Article  Google Scholar 

  • Bosi F, Halenius U, Skogby H (2009) Crystal chemistry of the magnetite-ulvöspinel series. Am Miner 94:181–189

    Article  Google Scholar 

  • Botcharnikov RE, Almeev RR, Koepke J, Holtz F (2008) Phase relations and liquid lines of descent in hydrous ferrobasalt-implications for the Skaergaard intrusion and Columbia River flood basalts. J Petrol 49(9):1687–1727

    Article  Google Scholar 

  • Buddington AF, Lindsley DH (1964) Iron-titanium oxide minerals and synthetic equivalents. J Petrol 5:310–357

    Google Scholar 

  • Campbell IH, Nolan J (1974) Factors effecting the stability field of Ca-poor pyroxene and the origin of the Ca-poor minimum in Ca-rich pyroxenes from tholeiitic intrusions. Contrib Miner Petrol 48:205–219

    Article  Google Scholar 

  • Carmichael ISE (1967) The mineralogy of Thingmuli, a Tertiary volcano in eastern Iceland. Am Min 52:1815–1841

    Google Scholar 

  • Carmichael ISE (1991) The redox states of basic and silicic magmas: a reflection of their source regions? Contrib Miner Petrol 106:129–141

    Article  Google Scholar 

  • Carmichael ISE, Ghiorso MS (1990) The effect of oxygen fugacity on the redox state of natural liquids and their crystallizing phases. In Nicholls J, Russell JK (eds) Modern Methods of igneous petrology: understanding magmatic processes, vol. 24. Mineralogical Society of America Reviews in Mineralogy, pp 191–212

  • Chou I-M, Eugster HP (1977) Solubility of magnetite in supercritical chloride solutions. Am J Sci 277:1296–1314

    Article  Google Scholar 

  • Clemens JD, Holloway JR, White AJR (1986) Origin of A-type granites: experimental constraints. Am Min 71:317–324

    Google Scholar 

  • Craddock PR, Dauphas N (2011) Iron isotopic compositions of geological reference materials and chondrites. Geostand Geoanal Res 35(1):101–123

    Article  Google Scholar 

  • Dall’agnol R, Scaillet B, Pichavant M (1999) An experimental study of a Lower Proterozoic A-type granite from the eastern Amazonian craton, Brazil. J Petrol 40(11):1673–1698

    Article  Google Scholar 

  • Dauphas N, Craddock PR, Asimow PD, Bennett VC, Nutman AP, Ohnenstetter D (2009) Iron isotopes may reveal the redox conditions of mantle melting from Archean to Present. Earth Planet Sci Lett 288(1–2):255–267

    Article  Google Scholar 

  • Dickenson MP, Hess PC (1986) Contributions to mineralogy and the structural role and homogeneous redox equilibria of iron in peraluminous, metaluminous and peralkaline silicate melts. Contrib Miner Petrol 92:207–217

    Article  Google Scholar 

  • Ebadi A, Johannes W (1991) Beginning of melting and composition of first melts in the system Qz-Ab-Or-H2O-CO2. Contrib Miner Petrol 106:286–295

    Article  Google Scholar 

  • Encarnaciòn J, Fleming TH, Elliot DH, Eales HV (1996) Synchronous emplacement of Ferrar and Karoo dolerites and the early breakup of Gondwana. Geology 24:535–538

    Article  Google Scholar 

  • Farges F, Lefrère Y, Rossano S, Berthereau A, Calas G, Brown GE Jr (2004) The effect of redox state on the local structural environment of iron in silicate glasses: a combined XAFS spectroscopy, molecular dynamics, and bond valence study. J Non-Cryst Solids 344(3):176–188

    Article  Google Scholar 

  • Feig ST, Koepke J, Snow JE (2010) Effect of oxygen fugacity and water on phase equilibria of a hydrous tholeiitic basalt. Contrib Miner Petrol 160(4):551–568

    Article  Google Scholar 

  • Fenner CN (1929) The crystallization of basalts. Am J Sci 5(18):225–253

    Article  Google Scholar 

  • Foden JD, Elburg MA, Dougherty-Page JS, Burt A (2006) The timing and duration of the Delamerian orogeny: correlation with the Ross Orogen and implications for Gondwana assembly. J Geol 114(2):189–210

    Article  Google Scholar 

  • Frost CD, Frost BR (1997) Reduced rapakivi-type granites: the tholeiite connection. Geology 25(7):647–650

    Article  Google Scholar 

  • Frost CD, Frost BR (2011) On ferroan (A-type) granitoids: their compositional variability and modes of origin. J Petrol 52(1):39–53

    Article  Google Scholar 

  • Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42(11):2033–2048

    Article  Google Scholar 

  • Grove TL, Juster TC (1989) Experimental investigations of low-Ca pyroxene stability and olivine-pyroxene-liquid equilibria at 1-atm in natural basaltic and andesitic liquids. Contrib Miner Petrol 103(3):287–305

    Article  Google Scholar 

  • Hall RP, Hughes DJ, Joyner L (1988) Fe-enrichment in tholeiitic pyroxenes: complex two-pyroxene assemblages in Mesozoic dolerites, southern Tasmania. Geol Mag 125(6):573–582

    Article  Google Scholar 

  • Heimann A, Beard BL, Johnson CM (2008) The role of volatile exsolution and sub-solidus fluid-rock interactions in producing high 56Fe-54Fe ratios in siliceous igneous rocks. Geochim Cosmochim Acta 72:4379–4396

    Article  Google Scholar 

  • Hergt JM, Chappell BW, McCulloch MT, McDougall I, Chivas AR (1989) Geochemical and isotopic constraints on the origin of the Jurassic dolerites of Tasmania. J Petrol 30:841–883

    Google Scholar 

  • Holtz F, Johannes W, Tamic N, Behrens H (2001) Maximum and minimum water contents of granitic melts generated in the crust: a re-evaluation and implications. Lithos 56(1):1–14

    Article  Google Scholar 

  • Jayasuriya KD, O’Neill HSC, Berry AJ, Campbell SJ (2004) A Mössbauer study of the oxidation state of Fe in silicate melts. Am Miner 89:1597–1609

    Google Scholar 

  • Jenner FE, O’Neill HSC (2012) Analysis of 60 Elements in 616 ocean floor basaltic glasses. Geochem Geophys Geosyst. doi:10.1029/2011GC004009

  • Johnson CM, Czamanske GK, Lipman PW (1989) Geochemistry of intrusive rocks associated with the Latir volcanic field, New Mexico, and contrasts between evolution of volcanic and plutonic rocks. Contrib Miner Petrol 103:90–109

    Article  Google Scholar 

  • Linnen RL, Keppler H (2002) Melt composition control of Zr/Hf fractionation in magmatic processes. Geochim Cosmochim Acta 66(18):3293–3301

    Article  Google Scholar 

  • Lowery Claiborne L, Miller CF, Walker BA, Wooden JL, Mazdab FK, Bea F (2006) Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: an example from the Spirit Mountain batholith, Nevada. Miner Mag 70(5):517–543

    Article  Google Scholar 

  • Mallmann G, O’Neill HSC (2009) The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). J Petrol 50(9):1765–1794

    Article  Google Scholar 

  • Manley CR, Bacon CR (2000) Rhyolite thermobarometry and the shallowing of the magma reservoir, Coso volcanic field, California. J Petrol 41(1):149–174

    Article  Google Scholar 

  • McCanta MC, Darby-Dyar M, Rutherford MJ, Delany JS (2004) Iron partitioning between basaltic melts and clinopyroxene as a function of oxygen fugacity. AmMiner 89:1685–1693

    Google Scholar 

  • McDougall I (1962) Differentiation of the Tasmanian dolerites: Red Hill dolerite-granophyre association. Geol Soc Am Bull 73:279–316

    Article  Google Scholar 

  • Métrich N, Rutherford MJ (1992) Experimental study of chlorine behavior in hydrous silicic melts. Geochim Cosmochim Acta 56(2):607–616

    Article  Google Scholar 

  • Mysen BO, Richet P (2005) Developments in geochemistry: vol. 10—silicate glasses and melts—properties and structure. Elsevier, B.V, Amsterdam, p 544

    Google Scholar 

  • Namur O, Charlier B, Toplis MJ, Higgins MD, Hounsell V, Liégeois J-P, Vander Auwera J (2011) Differentiation of tholeiitic basalt to A-type granite in the Sept Iles layered intrusion, Canada. J Petrol 52(3):487–539

    Article  Google Scholar 

  • Osborn EF (1959) Role of oxygen pressure in the crystallization and differentiation of basaltic magma. Am J Sci 257:609–647

    Article  Google Scholar 

  • Papike JJ, Karner JM, Shearer CK (2005) Comparative planetary mineralogy: valence state partitioning of Cr, Fe, Ti, and V among crystallographic sites in olivine, pyroxene, and spinel from planetary basalts. Am Miner 90(2–3):277–290

    Article  Google Scholar 

  • Poitrasson F (2006) On the iron isotope homogeneity level of the continental crust. Chem Geol 235:195–200

    Article  Google Scholar 

  • Poitrasson F, Freydier R (2005) Heavy iron isotope composition of granites determined by high resolution MC-ICP-MS. Chem Geol 222(1–2):132–147

    Article  Google Scholar 

  • Polyakov VB, Mineev SD (2000) The use of Mössbauer spectroscopy in stable isotope geochemistry. Geochim Cosmochim Acta 64(5):849–865

    Article  Google Scholar 

  • Polyakov VB, Clayton RN, Horita J, Mineev SD (2007) Equilibrium iron isotope fractionation factors of minerals: re-evaluation from the data of nuclear inelastic resonant X-ray scattering and Mössbauer spectroscopy. Geochim Cosmochim Acta 71:3833–3846

    Article  Google Scholar 

  • Richter FM, Dauphas N, Teng F-Z (2009a) Non-traditional fractionation of non-traditional isotopes: evaporation, chemical diffusion and Soret diffusion. Chem Geol 258:92–103

    Article  Google Scholar 

  • Richter FM, Watson EB, Mendybaev RA, Dauphas N, Georg RB, Watkins J, Valley JW (2009b) Isotopic fractionation of the major elements of molten basalt by chemical and thermal diffusion. Geochim Cosmochim Acta 73:4250–4263

    Article  Google Scholar 

  • Roskosz M, Luais B, Watson HC, Toplis MJ, Alexander CMOD, Mysen BO (2006) Experimental quantification of the fractionation of Fe isotopes during metal segregation from a silicate liquid. Earth Planet Sci Lett 248:851–867

    Article  Google Scholar 

  • Schauble EA (2004) Applying stable isotope fractionation theory to new systems. In: Johnson CM, Beard BL, Albarede F (eds) Geochemistry of non-traditional stable isotopes. Mineralogical Society of America, Washington, DC, pp 65–111

    Google Scholar 

  • Schauble EA, Rossman GR, Taylor HP Jr (2001) Theoretical estimates of equilibrium Fe-isotope fractionations from vibrational spectroscopy. Geochim Cosmochim Acta 65(15):2487–2497

    Article  Google Scholar 

  • Schmidt PW, McDougall I (1977) Palaeomagnetic and potassium-argon dating studies of the Tasmanian Dolerites. Aust J Earth Sci 24(5–6):321–328

    Google Scholar 

  • Schoenberg R, von Blanckenburg F (2006) Modes of planetary-scale Fe isotope fractionation. Earth Planet Sci Lett 252(3–4):342–359

    Article  Google Scholar 

  • Schoenberg R, Marks MAW, Schuessler JA, von Blanckenburg F, Markl G (2009) Fe isotope systematics of coexisting amphibole and pyroxene in the alkaline igneous rock suite of the Ilímaussaq Complex, South Greenland. Chem Geol 258(1–2):65–77

    Article  Google Scholar 

  • Schuessler JA, Schoenberg R, Behrens H, von Blanckenburg F (2006) Quantification of iron isotope fractionation between sulphide and oxide minerals and silicate melts. American Geophysical Union (AGU) Fall Meeting Abstract: V21B-0574

  • Schuessler J, Schoenberg R, Sigmarsson O (2009) Iron and lithium isotope systematics of the Hekla volcano, Iceland—evidence for Fe isotope fractionation during magma differentiation. Chem Geol 258:78–91

    Article  Google Scholar 

  • Shahar A, Young ED, Manning CE (2008) Equilibrium high-temperature Fe isotope fractionation between fayalite and magnetite: an experimental calibration. Earth Planet Sci Lett 268:330–338

    Article  Google Scholar 

  • Simon AC, Pettke T, Candela PA, Piccoli PM, Heinrich CA (2004) Magnetite solubility and iron transport in magmatic-hydrothermal environments. Geochim Cosmochim Acta 68(23):4905–4914

    Article  Google Scholar 

  • Sisson TW, Grove TL (1993) Temperatures and H2O contents of low-MgO high-alumina basalts. Contrib Miner Petrol 113(2):167–184

    Article  Google Scholar 

  • Snyder D, Carmichael ISE, Wiebe RA (1993) Experimental study of liquid evolution in an Fe-rich, layered mafic intrusion: constrains of Fe-Ti oxide precipitation on the T-fO2 and T-ρ paths of tholeiitic magmas. Contrib Miner Petrol 113:73–86

    Article  Google Scholar 

  • Taylor PDP, Maeck R, De Bièvre P (1992) Determination of the absolute isotopic composition and atomic weight of a reference sample of natural iron. Int J Mass Spectrom Ion Proc 121(1–2):111–125

    Google Scholar 

  • Teng F-Z, Wadhwa M, Helz RT (2007) Investigation of magnesium isotope fractionation during basalt differentiation: implications for a chondritic composition of the terrestrial mantle. Earth Planet Sci Lett 261(1–2):84–92

    Article  Google Scholar 

  • Teng F-Z, Dauphas N, Helz RT (2008) Iron isotope fractionation in Kilauea Iki Lava Lake. Science 320:1620–1622

    Article  Google Scholar 

  • Teng F-Z, Dauphas N, Helz RT, Gao S, Huang S (2011) Diffusion-driven magnesium and iron isotope fractionation in Hawaiian olivine. Earth Planet Sci Lett 308(3–4):317–324

    Article  Google Scholar 

  • Tomascak PB, Tera F, Helz RT, Walker RJ (1999) The absence of lithium isotope fractionation during basalt differentiation: new measurements by multicollector sector ICP-MS. Geochim Cosmochim Acta 63(6):907–910

    Article  Google Scholar 

  • Toplis MJ, Carroll MR (1995) An experimental study of the influence of oxygen fugacity on Fe-Ti oxide stability, phase relations, and mineral-melt equilibria in ferro-basaltic systems. J Petrol 36(5):1137–1170

    Google Scholar 

  • Toplis MJ, Carroll MR (1996) Differentiation of ferro-basaltic magmas under conditions open and closed to oxygen: implications for the Skaergaard Intrusion and other natural systems. J Petrol 37:837–858

    Article  Google Scholar 

  • Turner SP, Foden JD, Morrison RS (1992) Derivation of some A-type magmas by fractionation of basaltic magma: an example from the Padthaway Ridge, South Australia. Lithos 28:151–179

    Article  Google Scholar 

  • Tuttle OF, Bowen NL (1958) Origin of granite in the light of experimental studies in the system NaAISi3O8-KAISi3O8-SiO2-H2O. Geol Soc Am Mem 74:153

    Google Scholar 

  • Valaas-Hyslop E, Valley JW, Johnson CM, Beard BL (2008) The effects of metamorphism on O and Fe isotope compositions in the Biwabik Iron Formation, northern Minnesota. Contrib Miner Petrol 155:313–328

    Article  Google Scholar 

  • Veksler IV (2004) Liquid immiscibility and its role at the magmatic-hydrothermal transition: a summary of experimental studies. Chem Geol 210(1–4):7–31

    Article  Google Scholar 

  • Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geoth Res 140:217–240

    Article  Google Scholar 

  • Whalen JB, Chappell BW (1988) Opaque mineralogy and mafic mineral chemistry of I- and S-type granites of the Lachlan foldbelt, southeast Australia. Am Miner 73:281–296

    Google Scholar 

  • Williams IS, Hergt JM (2000) U–Pb dating of Tasmanian dolerites: a cautionary tale of SHRIMP analysis of high-U zircon. In: Woodhead JD, Hergt JM, Noble WP (eds) Beyond 2000: new frontiers in isotope geoscience. School of Earth Sciences, University of Melbourne, Melbourne, pp 185–188

    Google Scholar 

  • Wilson AD (1960) The Microdetermination of ferrous iron in silicate minerals by a volumetric and a colorimetric method. Analyst 85:823–827

    Article  Google Scholar 

Download references

Acknowledgments

We are indebted to John Stanley for performing the XRF analyses, and Jason Kirby and Claire Wright at the CSIRO for their assistance with the daily running of the MC-ICP-MS. Oliver Nebel, Adriana Heimann and two anonymous reviewers are greatly thanked for their constructive and in-depth reviews. We particularly appreciate the insightful comments and editorial handling of Franck Poitrasson that significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo A. Sossi.

Additional information

Communicated by F. Poitrasson.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sossi, P.A., Foden, J.D. & Halverson, G.P. Redox-controlled iron isotope fractionation during magmatic differentiation: an example from the Red Hill intrusion, S. Tasmania. Contrib Mineral Petrol 164, 757–772 (2012). https://doi.org/10.1007/s00410-012-0769-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-012-0769-x

Keywords

Navigation