Skip to main content

Advertisement

Log in

An H2O–CO2 mixed fluid saturation model compatible with rhyolite-MELTS

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

A thermodynamic model for estimating the saturation conditions of H2O–CO2 mixed fluids in multicomponent silicate liquids is described. The model extends the capabilities of rhyolite-MELTS (Gualda et al. in J Petrol 53:875–890, 2012a) and augments the water saturation model in MELTS (Ghiorso and Sack in Contrib Mineral Petrol 119:197–212, 1995). The model is internally consistent with the fluid-phase thermodynamic model of Duan and Zhang (Geochim Cosmochim Acta 70:2311–2324, 2006). It may be used independently of rhyolite-MELTS to estimate intensive variables and fluid saturation conditions from glass inclusions trapped in phenocrysts. The model is calibrated from published experimental data on water and carbon dioxide solubility, and mixed fluid saturation in silicate liquids. The model is constructed on the assumption that water dissolves to form a hydroxyl melt species, and that carbon dioxide both a molecular species and a carbonate ion, the latter complexed with calcium. Excess enthalpy interaction terms in part compensate for these simplistic assumptions regarding speciation. The model is restricted to natural composition liquids over the pressure range 0–3 GPa. One characteristic of the model is that fluid saturation isobars at pressures greater than ~100 MPa always display a maximum in melt CO2 at nonzero H2O melt concentrations, regardless of bulk composition. This feature is universal and can be attributed to the dominance of hydroxyl speciation at low water concentrations. The model is applied to four examples. The first involves estimation of pressures from H2O–CO2-bearing glass inclusions found in quartz phenocrysts of the Bishop Tuff. The second illustrates H2O and CO2 partitioning between melt and fluid during fluid-saturated equilibrium and fractional crystallization of MORB. The third example demonstrates that the position of the quartz–feldspar cotectic surface is insensitive to melt CO2 contents, which facilitates geobarometry using phase equilibria. The final example shows the effect of H2O and CO2 on the crystallization paths of a high-silica rhyolite composition representative of the late-erupted Bishop Tuff. Software that implements the model is available at ofm-research.org, and the model is incorporated into the latest version (1.1+) of rhyolite-MELTS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. Throughout this paper for the melt phase: Unit activity of the pure substance at any T and P.

  2. Through this paper, we define a natural composition as one that contains finite concentrations of the oxides SiO2, Al2O3, FeO, MgO, CaO, and one of either Na2O or K2O.

  3. An empirical polynomial is fitted to the plotted function and yields the equation: weight = 0.0064788 (wt% H2O) (wt% H2O) + 0.18906661 (wt% H2O) + 0.01583988.

  4. An updated version of rhyolite-MELTS may be downloaded from melts.ofm-research.org that implements both the compromised mixed fluid model, which is suitable for quartz-two-feldspar cotectic compositions, and the full mixed fluid model, which is applicable to other natural magma compositions.

References

  • Allen JF, Batiza R, Perfit MR, Fornari DJ, Sack RO (1989) Petrology of lavas from the Lamont seamount chain and adjacent East Pacific Rise, 10°N. J Petrol 30:1245–1298

    Google Scholar 

  • Anderson AT, Davis AM, Lu FQ (2000) Evolution of Bishop Tuff rhyolitic magma based on melt and magnetite inclusions and zoned phenocrysts. J Petrol 41:449–473

    Google Scholar 

  • Barclay J, Rutherford MJ, Carroll MR, Murphy MD, Devine JD, Gardner J, Sparks RSJ (1998) Experimental phase equilibria constraints on pre-eruptive storage conditions of the Soufriere Hills magma. Geophys Res Lett 25:3437–3440

    Google Scholar 

  • Behrens H (1995) Determination of water solubilities in high-viscosity melts: an experimental study on NaAlSI3O8 and KAlSi3O8 melts. Eur J Mineral 7:905–920

    Google Scholar 

  • Behrens H, Jantos N (2001) The effect of anhydrous composition on water solubility in granitic melts. Am Mineral 86:14–20

    Google Scholar 

  • Behrens H, Nowak M (1997) The mechanisms of water diffusion in polymerized silicate melts. Contrib Mineral Petrol 126:377–385

    Google Scholar 

  • Behrens H, Meyer M, Holtz F, Benne D, Nowak M (2001) The effect of alkali ionic radius, temperature, and pressure on the solubility of water in MAlSi3O8 melts (M = Li, Na, K, Rb). Chem Geol 174:275–289

    Google Scholar 

  • Behrens H, Ohlhorst S, Holtz F, Champenois M (2004a) CO2 solubility in dacitic melts equilibrated with H2O–CO2 fluids: implications for modeling the solubility of CO2 in silicic melts. Geochim Cosmochim Acta 68:4687–4703

    Google Scholar 

  • Behrens H, Tamic N, Holtz F (2004b) Determination of the molar absorption coefficient for the infrared absorption band of CO2 in rhyolitic glasses. Am Mineral 89:301–306

    Google Scholar 

  • Behrens H, Misiti V, Freda C, Vetere F, Botcharnikov RE, Scarlato P (2009) Solubility of H2O and CO2 in ultrapotassic melts at 1200 and 1250 °C and pressure from 50 to 500 MPa. Am Mineral 94:105–120

    Google Scholar 

  • Benne D, Behrens H (2003) Water solubility in haplobasaltic melts. Eur J Mineral 15:803–814

    Google Scholar 

  • Berndt J, Liebske C, Holtz F, Freise M, Nowak M, Ziegenbein D, Hurkuk W, Koepke J (2002) A combined rapid-quench and H2-membrane setup for internally heated pressure vessels: description and application for water solubility in basaltic melts. Am Mineral 87:1717–1720

    Google Scholar 

  • Bezmen NI, Zharikov VA, Epelbaum MB, Zavelsky VO, Dikov YP, Suk N, Koshemchuk SK (1991) The system NaAlSi3O8–H2O–H2 (1200 °C, 2-kbar)—the solubility and interaction mechanism of fluid species with melt. Contrib Mineral Petrol 109:89–97

    Google Scholar 

  • Blank JG, Stolper EM, Carroll MR (1993) Solubilities of carbon dioxide and water in rhyolitic melt at 850 °C and 750 bars. Earth and Planet Sci Lett 119:27–36

    Google Scholar 

  • Blatter DW, Carmichael ISE (2001) Hydrous phase equilibria of a Mexican high-silica andesite: a candidate for a mantle origin? Geochem Cosmochim Acta 65:4043–4065

    Google Scholar 

  • Blundy J, Cashman K, Rust A, Witham F (2010) A case for CO2-rich arc magmas: Earth Planet Sci Lett 290:289–301. doi:10.1016/j.epsl.2009.12.013

  • Botcharnikov R, Freise M, Holtz F, Behrens H (2005a) Solubility of C–O–H mixtures in natural melts: new experimental data and application range of recent models. Ann Geophys 48:633–646

    Google Scholar 

  • Botcharnikov R, Koepke J, Holtz F, McCammon C, Wilke M (2005b) The effect of water activity on the oxidation and structural state of Fe in a ferro-basaltic melt. Geochim Cosmochim Acta 69:5071–5085

    Google Scholar 

  • Botcharnikov RE, Behrens H, Holtz F (2006) Solubility and speciation of C–O–H fluids in andesitic melt at T = 1100–1300 °C and P = 200 and 500 MPa. Chem Geol 229:125–143

    Google Scholar 

  • Botcharnikov RE, Holtz F, Behrens H (2007) The effect of CO2 on the solubility of H2O-Cl fluids in andesitic melt. Eur J Mineral 19:671–680

    Google Scholar 

  • Brey GP (1976) CO2 solubility and solubility mechanisms in silicate melts at high pressures. Contrib Mineral Petrol 57:215–221

    Google Scholar 

  • Brooker R, Kohn S, Holloway J, McMillan P, Carroll M (1999) Solubility, speciation and dissolution mechanisms for CO2 in melts on the NaAlO2–SiO2 join. Geochim Cosmochim Acta 63:3549–3565

    Google Scholar 

  • Brooker R, Kohn S, Holloway J, McMillan P (2001) Structural controls on the solubility of CO2 in silicate melts part I: bulk solubility data. Chem Geol 174:225–239

    Google Scholar 

  • Burnham CW, Davis N (1974) The role of H2O in silicate melts; II. Thermodynamic and phase relations in the system NaAlSi3O8–H2O to 10 kilobars, 700 degrees to 1100 degrees C. Am J Sci 274:902–940

    Google Scholar 

  • Burnham C, Jahns R (1962) A method for determining the solubility of water in silicate melts. Am J Sci 260:721–745

    Google Scholar 

  • Burnham CW, Holloway JR, Davis NF (1969) Thermodynamic properties of water to 1000 °C and 10000 bars. Geol Soc Am Spec Pap 132:1–96

    Google Scholar 

  • Carroll M, Blank JG (1997) The solubility of H2O in phonolitic melts. Am Mineral 82:549–556

    Google Scholar 

  • Di Matteo V, Carroll M, Behrens H, Vetere F, Brooker R (2004) Water solubility in trachytic melts. Chem Geol 213:187–196

    Google Scholar 

  • Dingwell DB, Harris DM, Scarfe CM (1984) The solubility of H2O in melts in the system SiO2–Al2O3–Na2O–K2O at 1-kbar to 2-kbar. J Geol 92:387–395

    Google Scholar 

  • Dingwell DB, Holtz F, Behrens H (1997) The solubility of H2O in peralkaline and peraluminous granitic melts. Am Mineral 82:434–437

    Google Scholar 

  • Dixon J, Stolper E, Holloway J (1995) An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part I: calibration and solubility models. J Petrol 36:1607–1631

    Google Scholar 

  • Duan X (2014) A general model for predicting the solubility behavior of H2O–CO2 fluids in silicate melts over a wide range of pressure, temperature and compositions. Geochim Cosmochim Acta 125:582–609

    Google Scholar 

  • Duan Z, Zhang Z (2006) Equation of state of the H2O, CO2, and H2O–CO2 systems up to 10 GPa and 2573.15 K: molecular dynamics simulations with ab initio potential surface. Geochim Cosmochim Acta 70:2311–2324

    Google Scholar 

  • Duncan MS, Agee CB (2011) The partial molar volume of carbon dioxide in peridotite partial melt at high pressure. Earth Planet Sci Lett 312:429–436

    Google Scholar 

  • Duncan MS, Dasgupta R (2014) CO2 solubility and speciation in rhyolitic sediment partial melts at 1.5–3.0 GPa—implications for carbon flux in subduction zones. Geochim Cosmochim Acta 124:328–347

    Google Scholar 

  • Eggler DH (1973) Role of CO2 in melting processes in the mantle. Yearb Carnegie Inst Wash 72:457–467

    Google Scholar 

  • Feig ST, Koepke J, Snow JE (2006) Effect of water on tholeiitic basalt phase equilibria: an experimental study under oxidizing conditions. Contrib Mineral Petrol 152:611–638

    Google Scholar 

  • Fine G, Stolper EM (1985) The speciation of carbon dioxide in sodium aluminosilicate melts. Contrib Mineral Petrol 91:105–121

    Google Scholar 

  • Fine G, Stolper EM (1986) Dissolved carbon dioxide in basaltic glasses: concentrations and speciation. Earth Planet Sci Lett 76:263–278

    Google Scholar 

  • Fogel RA, Rutherford M (1990) The solubility of carbon-dioxide in rhyolitic melts—a quantitative FTIR study. Am Mineral 75:1311–1326

    Google Scholar 

  • Gaillard F, Pichavant M, Scaillet B (2003) Experimental determination of activities of FeO and Fe2O3 components in hydrous silicic melts under oxidizing conditions. Geochim Cosmochim Acta 67:4389–4409

    Google Scholar 

  • Gerke TL, Kilinc AI (1992) Enrichment of SiO2 in rhyolites by fractional crystallization: an experimental study of peraluminous granitic rocks from the St. Francois Mountains, Missouri, USA. Lithos 29:273–283

    Google Scholar 

  • Ghiorso MS (1997) Thermodynamic modeling of igneous processes. Annual Rev Earth Planet Sci 25:221–241

    Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212

    Google Scholar 

  • Ghiorso MS, Carmichael ISE, Rivers ML, Sack RO (1983) The Gibbs free energy of mixing of natural silicate liquids; an expanded regular solution approximation for the calculation of magmatic intensive variables. Contrib Mineral Petrol 84:107–145

    Google Scholar 

  • Ghiorso MS, Hirschmann MM, Reiners PW, Kress VC III (2002) The pMELTS: a revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochem Geophys Geosyst. doi:10.1029/2001GC000217

    Google Scholar 

  • Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134

    Google Scholar 

  • Grove TL, Donnelly-Nolan JM, Housh T (1997) Magmatic processes that generated the rhyolite of Glass Mountain, Medicine Lake volcano, N. California. Contrib Mineral Petrol 127:205–223

    Google Scholar 

  • Gualda GAR, Ghiorso MS (2013) The Bishop Tuff giant magma body: an alternative to the standard model. Contrib Mineral Petrol 166:755–775

    Google Scholar 

  • Gualda GAR, Ghiorso MS (2014) Phase-equilibrium geobarometers for silicic rocks based on rhyolite-MELTS. Part 1: principles, procedures, and evaluation of the method. Contrib Mineral Petrol 168:1033. doi:10.1007/s00410-014-1033-3

    Google Scholar 

  • Gualda GAR, Ghiorso MS, Lemons RV, Carley TL (2012a) Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. J Petrol 53:875–890

    Google Scholar 

  • Gualda GAR, Pamukcu AS, Ghiorso MS, Anderson AT Jr, Sutton SR, Rivers ML (2012b) Timescales of quartz crystallization and the longevity of the Bishop giant magma body. PLoS One 7:e37492

    Google Scholar 

  • Guillot B, Sator N (2011) Carbon dioxide in silicate melts: a molecular dynamics simulation study. Geochim Cosmochim Acta 75:1829–1857

    Google Scholar 

  • Haar L, Gallagher JS, Kell GS (1984) NBS/NRC steam tables. Thermodynamic and transport properties and computer programs for vapor and liquid states of water in SI units. Hemisphere, Washington, DC, pp 271–276

    Google Scholar 

  • Hamilton D, Oxtoby S (1986) Solubility of water in albite-melt determined by the weight-loss method. J Geol 94:626–630

    Google Scholar 

  • Hamilton D, Burnham C, Osborn E (1964) The solubility of water and effects of oxygen fugacity and water content on crystallization in mafic magmas. J Petrol 5:21–39

    Google Scholar 

  • Hammer JE, Rutherford MJ, Hildreth W (2002) Magma storage prior to the 1912 eruption at Novarupta, Alaska. Contrib Mineral Petrol 144:144–162

    Google Scholar 

  • Helgeson HC, Kirkham DH (1974) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. I. Summary of the thermodynamic/electrostatic properties of the solvent. Am J Sci 274:1089–1198

    Google Scholar 

  • Hildreth W (1979) The Bishop Tuff: evidence for the origin of compositional zonation in silicic magma chambers. Geol Soc Am Spec Pap 180:43–75

    Google Scholar 

  • Hirschmann MM, Ghiorso MS, Davis FA, Gordon SM, Mukerjee S, Grove TL, Krawczynski M, Medard E, Till CB (2008) Library of experimental phase relations (LEPR): a database and web portal for experimental magmatic phase equilibria. Geochem Geophys Geosys 9:Q03011. doi:10.1029/2007GC001894

    Google Scholar 

  • Holloway JR (1976) Fluids in the evolution of granitic magmas: consequences of finite CO2 solubility. Geol Soc Am Bull 10:1513–1518

    Google Scholar 

  • Holtz F, Behrens H, Dingwell DB, Taylor R (1992) Water solubility in aluminosilicate melts of haplogranite composition at 2 kbar. Chem Geol 96:289

    Google Scholar 

  • Holtz F, Behrens H, Dingwell DB, Johannes W (1995) H2O solubility in haplogranitic melts; compositional, pressure, and temperature dependence. Am Mineral 80:94

    Google Scholar 

  • Holtz F, Roux J, Behrens H, Pichavant M (2000) Water solubility in silica and quartzofeldspathic melts. Am Mineral 85:682–686

    Google Scholar 

  • Hui H, Zhang Y, Xu Z, Behrens H (2008) Pressure dependence of the speciation of dissolved water in rhyolitic melts. Geochim Cosmochim Acta 72:3229–3240

    Google Scholar 

  • Iacono-Marziano G, Gaillard F, Pichavant M (2008) Limestone assimilation by basaltic magmas: an experimental re-assessment and application to Italian volcanoes. Contrib Mineral Petrol 155:719–738

    Google Scholar 

  • Iacono-Marziano G, Morizet Y, Le Trong E, Gaillard F (2012) New experimental data and semi-empirical parameterization of H2O–CO2 solubility in mafic melts. Geochim Cosmochim Acta 97:1–23

    Google Scholar 

  • Iacovino K, Moore G, Roggensack K, Oppenheimer C, Kyle P (2013) H2O–CO2 solubility in mafic alkaline magma: applications to volatile sources and degassing behavior at Erebus volcano, Antarctica. Contrib Mineral Petrol. doi:10.1007/s00410-013-0877-2

    Google Scholar 

  • Jakobsson S (1997) Solubility of water and carbon dioxide in an icelandite at 1400°C and 10 kilobars. Contrib Mineral Petrol 127:129–135

    Google Scholar 

  • Johannes W, Holtz F (1996) Petrogenesis and experimental petrology of granitic rocks. Springer, Berlin

    Google Scholar 

  • Kennedy G, Wasserburg G, Heard H, Newton R (1962) The upper three-phase region in the system SiO2–H2O. Am J Sci 260:501

    Google Scholar 

  • Kerrick DH, Jacobs GK (1981) A modified Redlick–Kwong equation for H2O, CO2, and H2O–CO2 mixtures at elevated pressures and temperatures. Am J Sci 281:735–767

    Google Scholar 

  • Khitarov NI, Kadik AS, Lebedev EB (1963) Estimate of the thermal effect of the separation of water from felsic melts based on data for the system albite-water. Geochemistry 7:637–649

    Google Scholar 

  • Khitarov NI, Kadik AA, Lebedev YB (1968) solubility of water in a basalt melt. Geochem Int 5:667–674

    Google Scholar 

  • King PL, Holloway JR (2002) CO2 solubility and speciation in intermediate (andesitic) melts: the role of H2O and composition. Geochim Cosmochim Acta 66:1627–1640

    Google Scholar 

  • Kogarko LN, Burnham CW, Shettle D (1977) Water regime in alkalic magmas. Geochem Int 5:1–8

    Google Scholar 

  • Kohn S, Dupree R, Smith ME (1989) A multinuclear magnetic-resonance study of the structure of hydrous albite glasses. Geochim Cosmochim Acta 53:2925–2935

    Google Scholar 

  • Kress VC, Carmichael ISE (1988) Stoichiometry of the iron oxidation reaction in silicate melts. Am Mineral 73:1267–1274

    Google Scholar 

  • Kress VC, Carmichael ISE (1991) The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib Mineral Petrol 108:82–92

    Google Scholar 

  • Lange RA (1994) The effect of H2O, CO2, and F on the density and viscosity of silicate melts. In: Carroll MR, Holloway JR (eds) Volatiles in magmas. Rev Mineral, vol 30, pp 331–369

  • Lange RA, Carmichael ISE (1987) Densities of Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–TiO2–SiO2 liquids—new measurements and derived partial molar properties. Geochim Cosmochim Acta 51:2931–2946

    Google Scholar 

  • Larsen J, Gardner J (2004) Experimental study of water degassing from phonolite melts: implications for volatile oversaturation during magmatic ascent. J Volcanol Geoth Res 134:109–124

    Google Scholar 

  • Lawson CL, Hanson RJ (1974) Solving least squares problems. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27:745–750

    Google Scholar 

  • Lesne P, Kohn SC, Blundy J, Witham F, Botcharnikov RE, Behrens H (2011a) Experimental simulation of closed-system degassing in the system basalt-H2O–CO2–S–Cl. J Petrol 52:1737–1762

    Google Scholar 

  • Lesne P, Scaillet B, Pichavant M, Beny J-M (2011b) The carbon dioxide solubility in alkalic basalts: an experimental study. Contrib Mineral Petrol 162:153–168

    Google Scholar 

  • Lesne P, Scaillet B, Pichavant M, Iacono-Mariziano G, Beny J-M (2011c) The H2O solubility of alkali basaltic melts: an experimental study. Contrib Mineral Petrol 162:133–151

    Google Scholar 

  • Liu Q, Lange RA (2003) New density measurements on carbonate liquids and the partial molar volume of the CaCO3 component. Contrib Mineral Petrol 146:370–381

    Google Scholar 

  • Liu Y, Zhang Y, Behrens H (2005) Solubility of H2O in rhyolitic melts at low pressures and a new empirical model for mixed H2O–CO2 solubility in rhyolitic melts. J Volcanol Geoth Res 143:219–225

    Google Scholar 

  • Mangan M, Sisson T (2000) Delayed, disequilibrium degassing in rhyolitic magma: decompression experiments and implications for explosive volcanism. Earth Planet Sci Lett 183:441–455

    Google Scholar 

  • Martel C, Pichavant M, Bourdier J-L, Traineau H, Holtz F, Scaillet B (1998) Magma storage conditions and control of eruption regime in silicic volcanoes: experimental evidence from Mt. Pelé. Earth Planet Sci Lett 156:89–99

    Google Scholar 

  • Mattey DP (1991) Carbon dioxide solubility and carbon isotope fractionation in basaltic melt. Geochim Cosmochim Acta 55:3467–3473

    Google Scholar 

  • Mattey DP, Taylor WR, Green DH, Pillinger CT (1990) Carbon isotopic fractionation between CO2 vapor, silicate and carbonate melts—an experimental-study to 30 Kbar. Contrib Mineral Petrol 104:492–505

    Google Scholar 

  • McMillan P, Peraudea G, Holloway J, Coutures JP (1986) Water solubility in a calcium aluminosilicate melt. Contrib Mineral Petrol 94:178–182

    Google Scholar 

  • Medard E, Grove TL (2008) The effect of H2O on the olivine liquidus of basaltic melts: experiments and thermodynamic models. Contrib Mineral Petrol 155:417–432

    Google Scholar 

  • Métrich N, Rutherford MJ (1998) Low pressure crystallization path of H2O-saturated basaltic-hawaiite melts from Mt. Etna: implications for open-system degassing of basaltic volcanoes. Geochim Cosmochim Acta 62:1195–1205

    Google Scholar 

  • Moore G (2008) Interpreting H2O and CO2 contents in melt inclusions: constraints from solubility experiments and modeling. In: Putirka KD, Tepley FJ III (eds) Minerals, inclusions and volcanic processes. Rev Mineral Geochem, vol 69, pp 333–361

  • Moore G, Carmichael ISE (1998) The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: constraints on water content and conditions of phenocryst growth. Contrib Mineral Petrol 130:304–319

    Google Scholar 

  • Moore G, Vennemann T, Carmichael ISE (1998) An empirical model for the solubility of H2O in magmas to 3 kilobars. Am Mineral 83:36–42

    Google Scholar 

  • Moore G, Roggensack K, Klonowski S (2008) A low-pressure high-temperature technique for the piston-cylinder. Am Mineral 93:48–52

    Google Scholar 

  • Morizet Y, Brooker R, Kohn S (2002) CO2 in haplo-phonolite melt: solubility, speciation and carbonate complexation. Geochim Cosmochim Acta 66:1809–1820

    Google Scholar 

  • Morizet Y, Paris M, Gaillard F, Scaillet B (2010) C-O-H fluid solubility in haplobasalt under reducing conditions: an experimental study. Chem Geol 279:1–16

    Google Scholar 

  • Mysen BO (1976) Role of volatiles in silicate melts—solubility of carbon-dioxide and water in feldspar, pyroxene, and feldpathoid melts to 30 Kb and 1625 °C. Am J Sci 276:969–996

    Google Scholar 

  • Mysen BO, Cody GD (2004) Solubility and solution mechanism of H2O in alkali silicate melts and glasses at high pressure and temperature. Geochim Cosmochim Acta 68:5113–5126

    Google Scholar 

  • Mysen BO, Seitz MG, Frantz JD (1974) Measurements of the solubility of carbon dioxide in silicate melts utilizing maps of carbon-14 beta activity. Carnegie Inst Wash Yearb 73:224–226

    Google Scholar 

  • Newman S, Lowenstern JB (2002) VOLATILECALC: a silicate melt-H2O–CO2 solution model written in Visual Basic for excel. Comput Geosci 28:597–604

    Google Scholar 

  • Nicholls J (1980) A simple thermodynamic model for estimating the solubility of H2O in magmas. Contrib Mineral Petrol 74:211–220

    Google Scholar 

  • Nowak M, Behrens H (1995) Speciation of water in haplogranitic glasses and melts determined by in situ near-infrared spectroscopy. Geochim Cosmochim Acta 59:3445–3450

    Google Scholar 

  • Nowak M, Schreen D, Spickenbom K (2004) Argon and CO2 on the race track in silicate melts: a tool for the development of a CO2 speciation and diffusion model. Geochim Cosmochim Acta 68:5127–5138

    Google Scholar 

  • Ochs FA III, Lange RL (1997) The partial molar volume, thermal expansivity, and compressibility of H2O in NaAlSi3O8 liquid: new measurements and an internally consistent model. Contrib Mineral Petrol 129:155–165

    Google Scholar 

  • Ohlhorst S, Behrens H, Holtz F (2001) Compositional dependence of molar absorptivities of near-infrared OH and H2O bands in rhyolitic to basaltic glasses. Chem Geol 174:5–20

    Google Scholar 

  • Orlova GP (1962) The solubility of water in albite melts—under pressure. Int Geol Rev 6:254–258

    Google Scholar 

  • Oxtoby S, Hamilton DL (1978) The discrete association of water with Na2O and SiO2 in NaAl silicate melts. Contrib Mineral Petrol 66:185–188

    Google Scholar 

  • Paillat O, Elphick SC, Brown WL (1992) The solubility of water in NaAlSi3O8 melts—a reexamination of Ab-H2O phase-relationships and critical-behavior at high-pressures. Contrib Mineral Petrol 112:490–500

    Google Scholar 

  • Pan V, Holloway J, Hervig RL (1991) The pressure and temperature-dependence of carbon-dioxide solubility in tholeiitic basalt melts. Geochim Cosmochim Acta 55:1587–1595

    Google Scholar 

  • Papale P (1997) Modeling of the solubility of a one-component H2O or CO2 fluid in silicate liquids. Contrib Mineral Petrol 126:237–251

    Google Scholar 

  • Papale P (1999) Modeling of the solubility of a two-component H2O + CO2 fluid in silicate liquids. Am Mineral 84:477–492

    Google Scholar 

  • Papale P, Moretti R, Barbato D (2006) The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts. Chem Geol 229:78–95

    Google Scholar 

  • Pawley A, Holloway J, McMillan P (1992) The effect of oxygen fugacity on the solubility of carbon oxygen fluids in basaltic melt. Earth Planet Sci Lett 110:213–225

    Google Scholar 

  • Persikov ES (1974) Experimental studies of solubility of water in granitic melt and kinetics of the melt-water equilibria at high pressures. Int Geol Rev 16:1062–1067

    Google Scholar 

  • Pineau F, Shilobreeva S, Kadik A, Javoy M (1998) Water solubility and D/H fractionation in the system basaltic andesite-H2O at 1250 °C and between 0.5 and 3 kbars. Chem Geol 147:173–184

    Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1999) Numerical recipes in C: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Prigogine I, Defay R (1954) Chemical thermodynamics. Longmans Green, New York

    Google Scholar 

  • Rai CS, Sharma SK, Muenow DW, Matson DW, Byers CD (1983) Temperature-dependence of CO2 solubility in high-pressure quenched glasses of diopside composition. Geochim Cosmochim Acta 47:953–958

    Google Scholar 

  • Roach AL (2005) The evolution of silicic magmatism in the post-caldera volcanism of the Phlegrean Fields, Italy. Ph.D. Dissertation, Brown University

  • Robie RA, HemJngway BS, Fisher JR (1978) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperature. U.S. Geological Survey Bulletin 1452

  • Romano C, Dingwell DB, Behrens H (1996) Compositional dependence of H2O solubility along the joins NaAlSi3O8–KAlSi3O8, NaAlSi3O8–LiAlSi3O8, and KAlSi3O8–LiAlSi3O8. Am Mineral 81:452–461

    Google Scholar 

  • Schmidt BC, Behrens H (2008) Water solubility in phonolite melts: influence of melt composition and temperature. Chem Geol 256:259–268

    Google Scholar 

  • Schmidt B, Holtz F, Pichavant M (1999) Water solubility in haplogranitic melts coexisting with H2O–H2 fluids. Contrib Mineral Petrol 136:213–224

    Google Scholar 

  • Shaw HR (1963) Obsidian-H2O viscosities at 100 and 200 bars in temperature range 700 to 900 °C. J Geophys Res Solid Earth 68:6337–6343

    Google Scholar 

  • Shishkina TA, Botcharnikov RE, Holtz F, Almeev RR, Portnyagin MV (2010) Solubility of H2O- and CO2-bearing fluids in tholeiitic basalts at pressures up to 500 MPa. Chem Geol 277:115–125

    Google Scholar 

  • Shishkina TA, Botcharnikov RE, Holtz F, Almeev RR, Jazwa AM, Jakubiak AA (2014) Compositional and pressure effects on the solubility of H2O and CO2 in mafic melts. Chem Geol 388:112–129

  • Silver L, Stolper E (1989) Water in albitic glasses. J Petrol 30:667–709

    Google Scholar 

  • Silver LA, Ihinger PD, Stolper E (1990) The influence of bulk composition on the speciation of water in silicate-glasses. Contrib Mineral Petrol 104:142–162

    Google Scholar 

  • Spera FJ, Bergman SC (1980) Carbon dioxide in igneous petrogenesis: I. Aspects of the dissolution of CO2 in silicate liquids. Contrib Mineral Petrol 74:55–66

    Google Scholar 

  • Spera FJ, Bohrson WA, Till CB, Fowler SJ, Ghiorso MS (2007) Partitioning of trace elements among coexisting crystals, melt and supercritical fluid during isobaric fractional crystallization and fractional melting. Am Mineral 92:1881–1898

    Google Scholar 

  • Stolper EM (1982) The speciation of water in silicate melts. Geochim Cosmochim Acta 46:2609–2620

    Google Scholar 

  • Stolper EM (1989) Temperature dependence of the speciation of water in rhyolitic melts and glasses. Am Mineral 74:1247–1257

    Google Scholar 

  • Stolper EM, Holloway JR (1988) Experimental determination of the solubility of carbon dioxide in molten basalt at low pressure. Earth Planet Sci Lett 87:397–408

    Google Scholar 

  • Tamic N, Behrens H, Holtz F (2001) The solubility of H2O and CO2 in rhyolitic melts in equilibrium with a mixed CO2–H2O fluid phase. Chem Geol 174:333–347

    Google Scholar 

  • Thibault Y, Holloway J (1994) Solubility of CO2 in a Ca-rich leucitite—effects of pressure, temperature, and oxygen fugacity. Contrib Mineral Petrol 116:216–224

    Google Scholar 

  • Vetere F, Botcharnikov RE, Holtz F, Behrens H, De Rosa R (2011) Solubility of H2O and CO2 in shoshonitic melts at 1250 °C and pressures from 50 to 400 MPa: implications for Campi Flegrei magmatic systems. J Volcanol Geoth Res 202:251–261

    Google Scholar 

  • Vetere F, Holtz F, Behrens H, Botcharnikov RE, Fanara S (2014) The effect of alkalis and polymerization on the solubility of H2O and CO2 in alkali-rich silicate melts. Contrib Mineral Petrol 167:1014. doi:10.1007/s00410-014-1014-6

    Google Scholar 

  • Wallace PJ, Anderson AT, Davis AM (1995) Quantification of pre-eruptive exsolved gas contents in silicic magmas. Nature 377:612–616

    Google Scholar 

  • Wallace PJ, Anderson AT, Davis AM (1999) Gradients in H2O, CO2, and exsolved gas in a large-volume silicic magma system: interpreting the record preserved in melt inclusions from the Bishop Tuff. J Geophys Res Solid Earth 104:20097–20122

    Google Scholar 

  • Wasserburg GJ (1988) Diffusion of water in silicate melts. J Geol 96:363–367

    Google Scholar 

  • Watson EB (1979) Diffusion of cesium ions in H2O-saturated granitic melt. Science 205:1259–1260

    Google Scholar 

  • Wilke M, Behrens H, Burkhard D (2002) The oxidation state of iron in silicic melt at 500 MPa water pressure. Chem Geol 189:55–67

    Google Scholar 

  • Yamashita S (1999) Experimental study of the effect of temperature on water solubility in natural rhyolite melt to 100 MPa. J Petrol 40:1497–1507

    Google Scholar 

  • Yoder HS Jr (1965) Diopside-anorthite-water at five and ten kilobars and its bearing on explosive volcanism. Carnegie Inst Wash Yearb 64:82–89

    Google Scholar 

  • Zhang Y, Ni H (2010) Diffusion of H, C and O components in silicate melts. In: Zhang Y, Cherniak J (eds) Diffusion in minerals and melts. Rev Mineral Geochem, vol 72, pp 171–226

Download references

Acknowledgments

We are indebted to Gordon Moore for his helpful guidance, sage advice, and thoughtful insights. Three reviewers provided important and stimulating criticism that greatly improved the paper. In particular, the comments and suggestions of Roman Botcharnikov were especially helpful and directly instigated the metamorphosis of a mediocre first attempt into, we trust, a more useful and meaningful paper. Roman as well as Francesco Vetere generously shared experimental data prior to publication. Material support for this investigation was provided by the National Science Foundation through awards EAR 09-48734, EAR 11-19297, and EAR 13-21924 to MSG and EAR 09-48528, EAR 11-51337, and EAR 13-21806 to GARG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. Ghiorso.

Additional information

Communicated by Gordon Moore.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1543 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghiorso, M.S., Gualda, G.A.R. An H2O–CO2 mixed fluid saturation model compatible with rhyolite-MELTS. Contrib Mineral Petrol 169, 53 (2015). https://doi.org/10.1007/s00410-015-1141-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-015-1141-8

Keywords

Navigation