Skip to main content

Advertisement

Log in

Partial melting of fertile peridotite fluxed by hydrous rhyolitic melt at 2–3 GPa: implications for mantle wedge hybridization by sediment melt and generation of ultrapotassic magmas in convergent margins

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We investigated the melting behavior of peridotite fluxed with 25 wt% of H2O-bearing rhyolitic sediment melt (1.8 wt% bulk H2O), by performing experiments from 1100 to 1300 °C at 2 GPa and 1050–1350 °C at 3 GPa. The apparent solidus of our bulk composition lies between 1100 and 1150 °C at both pressures, which is at a higher temperature than the vapor-saturated solidus and close to the pargasite dehydration solidus of peridotite. With increasing temperature, reacted melt fraction increases from 20 to 36 wt% from 1200 to 1300 °C at 2 GPa and 7 to 24 wt% from 1225 to 1350 °C at 3 GPa. Orthopyroxene is present as a residual phase in all the experiments, while olivine is present as a residual phase in all the experiments at 2 GPa only. Amphibole is absent above 1100 °C at both pressures, clinopyroxene disappears above 1200 and 1300 °C at 2 and 3 GPa, respectively, and garnet (only present at 3 GPa) melts out above 1300 °C. Upon reaction with the mantle wedge and subsequent melting of the hybrid rock, subducted sediment-derived rhyolites evolve in composition to a nepheline-normative ultrapotassic leucitite, similar in major element composition to ultrapotassic lavas from active arcs such as Sunda and inactive arcs such as in the Roman Magmatic Province. Fluxing peridotite with H2O versus H2O-bearing sediment melt at similar pressures does not appear to have an effect on isobaric melt productivity, but does have significant effect on melting reactions and resultant melt composition, with influx of sediment melt adding K2O to the system, thereby stabilizing phlogopite, which in turn buffers the reacted melt to ultrapotassic compositions. Previous experimental studies, along with this study, find that phlogopite can be stable near the hotter core of the mantle wedge and, hence, is likely to be subducted to deeper mantle, thereby influencing deeper cycling of volatiles and large ion lithophile elements. Also, because D phl/meltRb  ≫ D phl/meltSr and D phl/meltNd , D phl/meltSm  ≪ 1, long-term stability of phlogopite in the mantle can create ‘enriched mantle’ domains (εSr and εNd ≥ 0).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Auzanneau E, Vielzeuf D, Schmidt MW (2006) Experimental evidence of decompression melting during exhumation of subducted continental crust. Contrib Miner Petrol 152(2):125–148. doi:10.1007/s00410-006-0104-5

    Article  Google Scholar 

  • Avanzinelli R, Elliott T, Tommasini S, Conticelli S (2008) Constraints on the genesis of potassium-rich Italian Volcanic Rocks from U/Th Disequilibrium. J Petrol 49(2):195–223. doi:10.1093/petrology/egm076

    Article  Google Scholar 

  • Baker MB, Stolper EM (1994) Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim Cosmochim Acta 58(13):2811–2827. doi:10.1016/0016-7037(94)90116-3

    Article  Google Scholar 

  • Ballhaus C, Berry RF, Green DH (1991) High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contrib Miner Petrol 107(1):27–40. doi:10.1007/BF00311183

    Article  Google Scholar 

  • Barr J, Grove T (2010) AuPdFe ternary solution model and applications to understanding the fO2 of hydrous, high-pressure experiments. Contrib Miner Petrol 160(5):631–643. doi:10.1007/s00410-010-0497-z

    Article  Google Scholar 

  • Barton M, Hamilton DL (1979) The melting relationships of a madupite from the Leucite Hills, Wyoming, to 30 Kb. Contrib Miner Petrol 69(2):133–142. doi:10.1007/BF00371856

    Article  Google Scholar 

  • Beccaluva L, Di Girolamo P, Serri G (1991) Petrogenesis and tectonic setting of the Roman Volcanic Province, Italy. Lithos 26(3–4):191–221. doi:10.1016/0024-4937(91)90029-K

    Article  Google Scholar 

  • Ben Othman D, White WM, Patchett J (1989) The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling. Earth Planet Sci Lett 94(1–2):1–21. doi:10.1016/0012-821X(89)90079-4

    Article  Google Scholar 

  • Boari E, Avanzinelli R, Melluso L, Giordano G, Mattei M, De Benedetti A, Morra V, Conticelli S (2009) Isotope geochemistry (Sr–Nd–Pb) and petrogenesis of leucite-bearing volcanic rocks from “Colli Albani” volcano, Roman Magmatic Province, Central Italy: inferences on volcano evolution and magma genesis. Bull Volc 71(9):977–1005. doi:10.1007/s00445-009-0278-6

    Article  Google Scholar 

  • Brey G, Green DH (1975) The role of CO2 in the genesis of olivine melilitite. Contrib Miner Petrol 49(2):93–103. doi:10.1007/bf00373853

    Article  Google Scholar 

  • Brey GP, Kohler T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31(6):1353–1378. doi:10.1093/petrology/31.6.1353

    Article  Google Scholar 

  • Conceição RV, Green DH (2004) Derivation of potassic (shoshonitic) magmas by decompression melting of phlogopite + pargasite lherzolite. Lithos 72(3–4):209–229. doi:10.1016/j.lithos.2003.09.003

    Article  Google Scholar 

  • Condamine P, Médard E (2014) Experimental melting of phlogopite-bearing mantle at 1 GPa: implications for potassic magmatism. Earth Planet Sci Lett 397:80–92. doi:10.1016/j.epsl.2014.04.027

    Article  Google Scholar 

  • Condamine P, Médard E, Devidal J-L (submitted) Experimental melting of phlogopite-peridotite in the garnet stability field. Contrib Mineral Petrol

  • Conte AM, Dolfi D, Gaeta M, Misiti V, Mollo S, Perinelli C (2009) Experimental constraints on evolution of leucite-basanite magma at 1 and 10−4 GPa: implications for parental compositions of Roman high-potassium magmas. Eur J Mineral 21(4):763–782

    Article  Google Scholar 

  • Conticelli S, D’Antonio M, Pinarelli L, Civetta L (2002) Source contamination and mantle heterogeneity in the genesis of Italian potassic and ultrapotassic volcanic rocks: Sr–Nd–Pb isotope data from Roman Province and Southern Tuscany. Mineral Petrol 74(2–4):189–222. doi:10.1007/s007100200004

    Article  Google Scholar 

  • Conticelli S, Marchionni S, Rosa D, Giordano G, Boari E, Avanzinelli R (2009) Shoshonite and sub-alkaline magmas from an ultrapotassic volcano: Sr–Nd–Pb isotope data on the Roccamonfina volcanic rocks, Roman Magmatic Province, Southern Italy. Contrib Miner Petrol 157(1):41–63. doi:10.1007/s00410-008-0319-8

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM (2006) Melting in the Earth’s deep upper mantle caused by carbon dioxide. Nature 440(7084):659–662. doi:10.1038/nature04612

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM (2007) Effect of variable carbonate concentration on the solidus of mantle peridotite. Am Mineral 92(2–3):370–379. doi:10.2138/am.2007.2201

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM, Smith ND (2007) Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of alkalic ocean island basalts. J Petrol 48(11):2093–2124. doi:10.1093/petrology/egm053

    Article  Google Scholar 

  • Dasgupta R, Mallik A, Tsuno K, Withers AC, Hirth G, Hirschmann MM (2013) Carbon-dioxide-rich silicate melt in the Earth’s upper mantle. Nature 493(7431):211–215. doi:10.1038/nature11731

    Article  Google Scholar 

  • Davis FA, Tangeman JA, Tenner TJ, Hirschmann MM (2009) The composition of KLB-1 peridotite. Am Mineral 94(1):176–180. doi:10.2138/am.2009.2984

    Article  Google Scholar 

  • Duncan MS, Dasgupta R (2014) CO2 solubility and speciation in rhyolitic sediment partial melts at 1.5–3.0 GPa—Implications for carbon flux in subduction zones. Geochim Cosmochim Acta 124:328–347. doi:10.1016/j.gca.2013.09.026

    Article  Google Scholar 

  • Eggler DH (1978) The effect of CO2 upon partial melting of peridotite in the system Na2O–CaO–Al2O3 –MgO–SiO2–CO2 to 35 kb, with an analysis of melting in a peridotite-H2O-CO2 system. Am J Sci 278(3):305–343. doi:10.2475/ajs.278.3.305

    Article  Google Scholar 

  • Elkins-Tanton LT, Grove TL (2003) Evidence for deep melting of hydrous metasomatized mantle: pliocene high-potassium magmas from the Sierra Nevadas. J Geophys Res Solid Earth 108(B7):2350. doi:10.1029/2002JB002168

    Article  Google Scholar 

  • Elliott T, Plank T, Zindler A, White W, Bourdon B (1997) Element transport from slab to volcanic front at the Mariana arc. J Geophys Res Solid Earth 102(B7):14991–15019. doi:10.1029/97JB00788

    Article  Google Scholar 

  • England PC, Katz RF (2010) Melting above the anhydrous solidus controls the location of volcanic arcs. Nature 467(7316):700–703

    Article  Google Scholar 

  • England P, Engdahl R, Thatcher W (2004) Systematic variation in the depths of slabs beneath arc volcanoes. Geophys J Int 156(2):377–408. doi:10.1111/j.1365-246X.2003.02132.x

    Article  Google Scholar 

  • Esperança S, Holloway J (1987) On the origin of some mica-lamprophyres: experimental evidence from a mafic minette. Contrib Miner Petrol 95(2):207–216. doi:10.1007/BF00381270

    Article  Google Scholar 

  • Foley SF (2011) A reappraisal of redox melting in the earth’s mantle as a function of tectonic setting and time. J Petrol 52(7–8):1363–1391. doi:10.1093/petrology/egq061

    Article  Google Scholar 

  • Foley SF, Venturelli G, Green DH, Toscani L (1987) The ultrapotassic rocks: characteristics, classification, and constraints for petrogenetic models. Earth Sci Rev 24(2):81–134. doi:10.1016/0012-8252(87)90001-8

    Article  Google Scholar 

  • Foley SF, Jackson SE, Fryer BJ, Greenouch JD, Jenner GA (1996) Trace element partition coefficients for clinopyroxene and phlogopite in an alkaline lamprophyre from Newfoundland by LAM-ICP-MS. Geochim Cosmochim Acta 60(4):629–638. doi:10.1016/0016-7037(95)00422-X

    Article  Google Scholar 

  • Gaetani GA, Grove TL (1998) The influence of water on melting of mantle peridotite. Contrib Miner Petrol 131(4):323–346. doi:10.1007/s004100050396

    Article  Google Scholar 

  • Green DH, Hibberson WO, Kovacs I, Rosenthal A (2010) Water and its influence on the lithosphere-asthenosphere boundary. Nature 467(7314):448–451. doi:10.1038/nature09369

    Article  Google Scholar 

  • Green DH, Hibberson WO, Rosenthal A, Kovács I, Yaxley GM, Falloon TJ, Brink F (2014) Experimental study of the influence of water on melting and phase assemblages in the upper mantle. J Petrol 55(10):2067–2096. doi:10.1093/petrology/egu050

    Article  Google Scholar 

  • Grove TL, Chatterjee N, Parman SW, Médard E (2006) The influence of H2O on mantle wedge melting. Earth Planet Sci Lett 249(1–2):74–89. doi:10.1016/j.epsl.2006.06.043

    Article  Google Scholar 

  • Hall L (1999) The effect of water on mantle melting. University of Bristol

  • Hawkesworth CJ, Turner SP, McDermott F, Peate DW, van Calsteren P (1997) U-Th isotopes in Arc magmas: implications for element transfer from the subducted crust. Science 276(5312):551–555. doi:10.1126/science.276.5312.551

    Article  Google Scholar 

  • Hermann J, Green DH (2001) Experimental constraints on high pressure melting in subducted crust. Earth Planet Sci Lett 188(1–2):149–168. doi:10.1016/S0012-821X(01)00321-1

    Article  Google Scholar 

  • Hermann J, Spandler CJ (2008) Sediment melts at sub-arc depths: an experimental study. J Petrol 49(4):717–740. doi:10.1093/petrology/egm073

    Article  Google Scholar 

  • Herzberg C, Raterron P, Zhang J (2000) New experimental observations on the anhydrous solidus for peridotite KLB-1. Geochem Geophys Geosyst 1(11) doi:10.1029/2000gc000089

  • Hirose K (1997) Melting experiments on lherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts. Geology 25(1):42–44. doi:10.1130/0091-7613(1997)025<0042:meolku>2.3.co;2

    Article  Google Scholar 

  • Hirose K, Kawamoto T (1995) Hydrous partial melting of lherzolite at 1 GPa: the effect of H2O on the genesis of basaltic magmas. Earth Planet Sci Lett 133(3–4):463–473. doi:10.1016/0012-821X(95)00096-U

    Article  Google Scholar 

  • Hirschmann MM (2000) Mantle solidus: Experimental constraints and the effects of peridotite composition. Geochem Geophys Geosyst 1(10) doi:10.1029/2000gc000070

  • Hirschmann MM, Baker MB, Stolper EM (1998) The effect of alkalis on the silica content of mantle-derived melts. Geochim Cosmochim Acta 62(5):883–902. doi:10.1016/S0016-7037(98)00028-3

    Article  Google Scholar 

  • Hoogewerff JA, Van Bergen MJ, Vroon PZ, Hertogen J, Wordel R, Sneyers A, Nasution A, Varekamp JC, Moens HLE, Mouchel D (1997) U-series, Sr-Nd-Pb isotope and trace-element systematics across an active island arc-continent collision zone: implications for element transfer at the slab-wedge interface. Geochim Cosmochim Acta 61(5):1057–1072. doi:10.1016/S0016-7037(97)84621-2

    Article  Google Scholar 

  • Iacono Marziano G, Gaillard F, Pichavant M (2007) Limestone assimilation and the origin of CO2 emissions at the Alban Hills (Central Italy): constraints from experimental petrology. J Volcanol Geoth Res 166(2):91–105. doi:10.1016/j.jvolgeores.2007.07.001

    Article  Google Scholar 

  • Jégo S, Dasgupta R (2014) The fate of sulfur during fluid-present melting of subducting basaltic crust at variable oxygen fugacity. J Petrol 55(6):1019–1050. doi:10.1093/petrology/egu016

    Article  Google Scholar 

  • Johnson MC, Plank T (2000) Dehydration and melting experiments constrain the fate of subducted sediments. Geochem Geophys Geosyst 1(12):1007. doi:10.1029/1999GC000014

    Article  Google Scholar 

  • Kamenetsky V, Métrich N, Cioni R (1995) Potassic primary melts of Vulsini (Roman Province): evidence from mineralogy and melt inclusions. Contrib Miner Petrol 120(2):186–196. doi:10.1007/BF00287116

    Article  Google Scholar 

  • Keller J (1983) Potassic lavas in the orogenic volcanism of the Mediterranean area. J Volcanol Geoth Res 18(1–4):321–335. doi:10.1016/0377-0273(83)90014-8

    Article  Google Scholar 

  • Kress VC, Carmichael ISE (1991) The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib Miner Petrol 108(1–2):82–92. doi:10.1007/BF00307328

    Article  Google Scholar 

  • LaTourrette T, Hervig RL, Holloway JR (1995) Trace element partitioning between amphibole, phlogopite, and basanite melt. Earth Planet Sci Lett 135(1–4):13–30. doi:10.1016/0012-821X(95)00146-4

    Article  Google Scholar 

  • Lloyd FE, Arima M, Edgar AD (1985) Partial melting of a phlogopite-clinopyroxenite nodule from south-west Uganda: an experimental study bearing on the origin of highly potassic continental rift volcanics. Contrib Miner Petrol 91(4):321–329. doi:10.1007/BF00374688

    Article  Google Scholar 

  • Mallik A, Dasgupta R (2012) Reaction between MORB-eclogite derived melts and fertile peridotite and generation of ocean island basalts. Earth Planet Sci Lett 329–330:97–108. doi:10.1016/j.epsl.2012.02.007

    Article  Google Scholar 

  • Mallik A, Dasgupta R (2013) Reactive infiltration of MORB-eclogite-derived carbonated silicate melt into fertile peridotite at 3 GPa and genesis of alkalic magmas. J Petrol 54(11):2267–2300. doi:10.1093/petrology/egt047

    Article  Google Scholar 

  • Mallik A, Dasgupta R (2014) Effect of variable CO2 on eclogite-derived andesite and lherzolite reaction at 3 GPa: implications for mantle source characteristics of alkalic ocean island basalts. Geochem Geophys Geosyst 15(4):1533–1557. doi:10.1002/2014GC005251

    Article  Google Scholar 

  • Mengel K, Green DH (1989) Stability of amphibole and phlogopite in metasomatized peridotite under water-saturated and water-undersaturated conditions. In: Fourth international kimberlite conference, vol 14. Perth. Geol. Soc. Aust. Spec. Publ., Perth, pp 571–581

  • Mitchell RH (1995) Melting experiments on a sanidine phlogopite lamproite at 4–7 GPa and their bearing on the sources of lamproitic magmas. J Petrol 36(5):1455–1474. doi:10.1093/petrology/36.5.1455

    Article  Google Scholar 

  • Morris JD, Leeman WP, Tera F (1990) The subducted component in island arc lavas: constraints from Be isotopes and B-Be systematics. Nature 344(6261):31

    Article  Google Scholar 

  • Nelson DR (1992) Isotopic characteristics of potassic rocks: evidence for the involvement of subducted sediments in magma genesis. Lithos 28(3–6):403–420. doi:10.1016/0024-4937(92)90016-R

    Article  Google Scholar 

  • Nicholls IA, Ringwood AE (1973) Effect of water on olivine stability in tholeiites and the production of silica-saturated magmas in the island-arc environment. J Geol 81:285–300

    Article  Google Scholar 

  • Nichols GT, Wyllie PJ, Stern CR (1996) Experimental melting of pelagic sediment, constraints relevant to subduction. In: Subduction top to bottom. American Geophysical Union, pp 293–298

  • O’Hara MJ, Yoder HS (1967) Formation and fractionation of basic magmas at high pressures. Scott J Geol 3(1):67–117. doi:10.1144/sjg03010067

    Article  Google Scholar 

  • O’Neill HS (1987) Quartz-fayalite-iron and quartz-fayalite-magnetite equilibria and the free energy of formation of fayalite (Fe2SiO4) and magnetite (Fe3O4). Am Mineral 72(1–2):67–75

    Google Scholar 

  • O’Hara MJ (1968) The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rocks. Earth Sci Rev 4:69–133

    Article  Google Scholar 

  • O’Leary JA, Gaetani GA, Hauri EH (2010) The effect of tetrahedral Al3+ on the partitioning of water between clinopyroxene and silicate melt. Earth Planet Sci Lett 297(1–2):111–120. doi:10.1016/j.epsl.2010.06.011

    Article  Google Scholar 

  • Parman SW, Grove TL (2004) Harzburgite melting with and without H2O: experimental data and predictive modeling. J Geophys Res Solid Earth 109(B2):B02201. doi:10.1029/2003JB002566

    Article  Google Scholar 

  • Pearce JA, Stern RJ, Bloomer SH, Fryer P (2005) Geochemical mapping of the Mariana arc-basin system: implications for the nature and distribution of subduction components. Geochem Geophys Geosyst 6(7):Q07006. doi:10.1029/2004GC000895

    Article  Google Scholar 

  • Peccerillo A (1985) Roman comagmatic province (central Italy): evidence for subduction-related magma genesis. Geology 13(2):103–106. doi:10.1130/0091-7613(1985)13<103:rcpcie>2.0.co;2

    Article  Google Scholar 

  • Plank T (2005) Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. J Petrol 46(5):921–944. doi:10.1093/petrology/egi005

    Article  Google Scholar 

  • Plank T, Langmuir CH (1993) Tracing trace elements from sediment input to volcanic output at subduction zones. Nature 362(6422):739–743

    Article  Google Scholar 

  • Plank T, Langmuir C (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325

    Article  Google Scholar 

  • Prouteau G, Scaillet B, Pichavant M, Maury R (2001) Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature 410(6825):197–200

    Article  Google Scholar 

  • Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantle recycling. J Petrol 36(4):891–931. doi:10.1093/petrology/36.4.891

    Article  Google Scholar 

  • Rapp RP, Shimizu N, Norman MD, Applegate GS (1999) Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chem Geol 160(4):335–356

    Article  Google Scholar 

  • Robert U, Foden J, Varne R (1992) The Dodecanese Province, SE Aegean: a model for tectonic control on potassic magmatism. Lithos 28(3–6):241–260. doi:10.1016/0024-4937(92)90009-N

    Article  Google Scholar 

  • Rogers NW, Hawkesworth CJ, Mattey DP, Harmon RS (1987) Sediment subduction and the source of potassium in orogenic leucitites. Geology 15(5):451–453. doi:10.1130/0091-7613(1987)15<451:ssatso>2.0.co;2

    Article  Google Scholar 

  • Sato K (1997) Melting experiments on a synthetic olivine lamproite composition up to 8 GPa: implication to its petrogenesis. J Geophys Res Solid Earth 102(B7):14751–14764. doi:10.1029/97JB00732

    Article  Google Scholar 

  • Schmidt KH, Bottazzi P, Vannucci R, Mengel K (1999) Trace element partitioning between phlogopite, clinopyroxene and leucite lamproite melt. Earth Planet Sci Lett 168(3–4):287–299. doi:10.1016/S0012-821X(99)00056-4

    Article  Google Scholar 

  • Schmidt MW, Vielzeuf D, Auzanneau E (2004) Melting and dissolution of subducting crust at high pressures: the key role of white mica. Earth Planet Sci Lett 228(1–2):65–84. doi:10.1016/j.epsl.2004.09.020

    Article  Google Scholar 

  • Sekine T, Wyllie PJ (1982a) Phase relationships in the system KAlSiO4-Mg2SiO4-SiO2-H2O as a model for hybridization between hydrous siliceous melts and peridotite. Contrib Miner Petrol 79(4):368–374. doi:10.1007/BF01132066

    Article  Google Scholar 

  • Sekine T, Wyllie PJ (1982b) The system granite-peridotite-H2O at 30 kbar, with applications to hybridization in subduction zone magmatism. Contrib Miner Petrol 81(3):190–202. doi:10.1007/BF00371296

    Article  Google Scholar 

  • Spandler C, Yaxley G, Green D, Scott D (2010) Experimental phase and melting relations of metapelite in the upper mantle: implications for the petrogenesis of intraplate magmas. Contrib Miner Petrol 160(4):569–589. doi:10.1007/s00410-010-0494-2

    Article  Google Scholar 

  • Stolz AJ, Varne R, Wheller GE, Foden JD, Abbott MJ (1988) The geochemistry and petrogenesis of K-rich alkaline volcanics from the Batu Tara volcano, eastern Sunda arc. Contrib Miner Petrol 98(3):374–389. doi:10.1007/BF00375187

    Article  Google Scholar 

  • Syracuse EM, Abers GA (2006) Global compilation of variations in slab depth beneath arc volcanoes and implications. Geochem Geophys Geosyst 7(5):Q05017. doi:10.1029/2005GC001045

    Article  Google Scholar 

  • Syracuse EM, van Keken PE, Abers GA (2010) The global range of subduction zone thermal models. Phys Earth Planet Inter 183(1–2):73–90. doi:10.1016/j.pepi.2010.02.004

    Article  Google Scholar 

  • Tatsumi Y (2001) Geochemical modeling of partial melting of subducting sediments and subsequent melt-mantle interaction: generation of high-Mg andesites in the Setouchi volcanic belt, southwest Japan. Geology 29(4):323–326. doi:10.1130/0091-7613(2001)029<0323:gmopmo>2.0.co;2

    Article  Google Scholar 

  • Tenner TJ, Hirschmann MM, Humayun M (2012) The effect of H2O on partial melting of garnet peridotite at 3.5 GPa. Geochem Geophys Geosyst 13:Q03016 doi:10.1029/2011gc003942

  • Thomsen TB, Schmidt MW (2008) Melting of carbonated pelites at 2.5–5.0 GPa, silicate–carbonatite liquid immiscibility, and potassium–carbon metasomatism of the mantle. Earth Planet Sci Lett 267(1–2):17–31. doi:10.1016/j.epsl.2007.11.027

    Article  Google Scholar 

  • Till CB, Grove TL, Withers AC (2012) The beginnings of hydrous mantle wedge melting. Contrib Miner Petrol 163(4):669–688. doi:10.1007/s00410-011-0692-6

    Article  Google Scholar 

  • Tsuno K, Dasgupta R (2011) Melting phase relation of nominally anhydrous, carbonated pelitic-eclogite at 2.5–3.0 GPa and deep cycling of sedimentary carbon. Contrib Miner Petrol 161(5):743–763. doi:10.1007/s00410-010-0560-9

    Article  Google Scholar 

  • Tsuno K, Dasgupta R (2012) The effect of carbonates on near-solidus melting of pelite at 3 GPa: relative efficiency of H2O and CO2 subduction. Earth Planet Sci Lett 319–320:185–196

    Article  Google Scholar 

  • van Bergen MJ, Vroon PZ, Varekamp JC, Poorter RPE (1992) The origin of the potassic rock suite from Batu Tara volcano (East Sunda Arc, Indonesia). Lithos 28(3–6):261–282. doi:10.1016/0024-4937(92)90010-V

    Article  Google Scholar 

  • Vielzeuf D, Holloway J (1988) Experimental determination of the fluid-absent melting relations in the pelitic system. Contrib Miner Petrol 98(3):257–276. doi:10.1007/BF00375178

    Article  Google Scholar 

  • Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39:29–60. doi:10.1093/petroj/39.1.29

    Article  Google Scholar 

  • Whitford DJ, Jezek PA (1982) Isotopic constraints on the role of subducted sialic material in Indonesian island-arc magmatism. Geol Soc Am Bull 93(6):504–513. doi:10.1130/0016-7606(1982)93<504:icotro>2.0.co;2

    Article  Google Scholar 

Download references

Acknowledgments

A.M and J.N acknowledge Ray Guillemette for his assistance with electron probe analysis at TAMU. Tim Grove is thanked for editorial handling. The paper benefitted from thoughtful reviews by Etienne Médard and an anonymous reviewer. Pierre Condamine and Etienne Médard are thanked for providing us with one of their manuscripts prior to publication. This work received support from US National Science Foundation grant EAR-1255391 to R.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananya Mallik.

Additional information

Communicated by Timothy L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 675 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallik, A., Nelson, J. & Dasgupta, R. Partial melting of fertile peridotite fluxed by hydrous rhyolitic melt at 2–3 GPa: implications for mantle wedge hybridization by sediment melt and generation of ultrapotassic magmas in convergent margins. Contrib Mineral Petrol 169, 48 (2015). https://doi.org/10.1007/s00410-015-1139-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-015-1139-2

Keywords

Navigation