Skip to main content

Advertisement

Log in

Melting phase relation of nominally anhydrous, carbonated pelitic-eclogite at 2.5–3.0 GPa and deep cycling of sedimentary carbon

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We have experimentally investigated melting phase relation of a nominally anhydrous, carbonated pelitic eclogite (HPLC1) at 2.5 and 3.0 GPa at 900–1,350°C in order to constrain the cycling of sedimentary carbon in subduction zones. The starting composition HPLC1 (with 5 wt% bulk CO2) is a model composition, on a water-free basis, and is aimed to represent a mixture of 10 wt% pelagic carbonate unit and 90 wt% hemipelagic mud unit that enter the Central American trench. Sub-solidus assemblage comprises clinopyroxene + garnet + K-feldspar + quartz/coesite + rutile + calcio-ankerite/ankeritess. Solidus temperature is at 900–950°C at 2.5 GPa and at 900–1,000°C at 3.0 GPa, and the near-solidus melt is K-rich granitic. Crystalline carbonates persist only 50–100°C above the solidus and at temperatures above carbonate breakdown, carbon exists in the form of dissolved CO2 in silica-rich melts and as a vapor phase. The rhyodacitic to dacitic partial melt evolves from a K-rich composition at near-solidus condition to K-poor, and Na- and Ca-rich composition with increasing temperature. The low breakdown temperatures of crystalline carbonate in our study compared to those of recent studies on carbonated basaltic eclogite and peridotite owes to Fe-enrichment of carbonates in pelitic lithologies. However, the conditions of carbonate release in our study still remain higher than the modern depth-temperature trajectories of slab-mantle interface at sub-arc depths, suggesting that the release of sedimentary carbonates is unlikely in modern subduction zones. One possible scenario of carbonate release in modern subduction zones is the detachment and advection of sedimentary piles to hotter mantle wedge and consequent dissolution of carbonate in rhyodacitic partial melt. In the Paleo-NeoProterozoic Earth, on the other hand, the hotter slab-surface temperatures at subduction zones likely caused efficient liberation of carbon from subducting sedimentary carbonates. Deeply subducted carbonated sediments, similar to HPLC1, upon encountering a hotter mantle geotherm in the oceanic province can release carbon-bearing melts with high K2O, K2O/TiO2, and high silica, and can contribute to EM2-type ocean island basalts. Generation of EM2-type mantle end-member may also occur through metasomatism of mantle wedge by carbonated metapelite plume-derived partial melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Auzanneau E, Vielzeuf D, Schmidt M (2006) Experimental evidence of decompression melting during exhumation of subducted continental crust. Contrib Mineral Petrol 152(2):125–148

    Article  Google Scholar 

  • Bau M, Knittel U (1993) Significance of slab-derived partial melts and aqueous fluids for the genesis of tholeiitic and calc-alkaline island-arc basalts: evidence from Mt Arayat Philippines. Chem Geol 105(4):233–251

    Article  Google Scholar 

  • Bose K, Ganguly J (1995) Quartz-coesite transition revisited: reversed experimental determination at 500–1,200°C and retrieved thermochemical properties. Am Mineral 80(3–4):231–238

    Google Scholar 

  • Brown M (2006) Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean. Geology 34(11):961–964

    Article  Google Scholar 

  • Buob A, Luth RW, Schmidt MW, Ulmer P (2006) Experiments on CaCO3-MgCO3 solid solutions at high pressure and temperature. Am Mineral 91(2–3):435–440

    Article  Google Scholar 

  • Connolly JAD (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett 236(1–2):524–541

    Article  Google Scholar 

  • Currie CA, Beaumont C, Huismans RS (2007) The fate of subducted sediments: a case for backarc intrusion and underplating. Geology 35(12):1111–1114

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM (2006) Melting in the Earth’s deep upper mantle caused by carbon dioxide. Nature 440(7084):659–662

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM (2010) The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett. doi:10.1016/j.epsl.2010.06.039

  • Dasgupta R, Hirschmann MM, Withers AC (2004) Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet Sci Lett 227(1–2):73–85

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM, Dellas N (2005) The effect of bulk composition on the solidus of carbonated eclogite from partial melting experiments at 3 GPa. Contrib Mineral Petrol 149(3):288–305

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM, Stalker K (2006) Immiscible transition from carbonate-rich to silicate-rich melts in the 3 GPa melting interval of eclogite + CO2 and genesis of silica-undersaturated ocean island lavas. J Petrol 47(4): 647–671

    Google Scholar 

  • Dasgupta R, Hirschmann MM, Smith ND (2007) Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of alkalic ocean island Basalts. J Petrol 48(11):2093–2124

    Article  Google Scholar 

  • de Leeuw GAM, Hilton DR, Fischer TP, Walker JA (2007) The He-CO2 isotope and relative abundance characteristics of geothermal fluids in El Salvador and Honduras: New constraints on volatile mass balance of the Central American Volcanic Arc. Earth Planet Sci Lett 258(1–2):132–146

    Google Scholar 

  • Eiler JM, Carr MJ, Reagan M, Stolper E (2005) Oxygen isotope constraints on the sources of Central American arc lavas. Geochem Geophys Geosyst 6:Q07007. doi:10.1029/2004GC000804

  • Elliott T, Plank T, Zindler A, White W, Bourdon B (1997) Element transport from slab to volcanic front at the Mariana arc. J Geophys Res 102:14991–15019

    Article  Google Scholar 

  • Falloon TJ, Green DH (1989) The solidus of carbonated, fertile peridotite. Earth Planet Sci Lett 94(3–4):364–370

    Article  Google Scholar 

  • Ferri F, Poli S, Vielzeuf D (2009) An experimental determination of the effect of bulk composition on phase relationships in metasediments at near-solidus conditions. J Petrol 50(5):909–931

    Article  Google Scholar 

  • Fogel RA, Rutherford MJ (1990) The solubility of carbon dioxide in rhyolitic melts: a quantitative FTIR study. Am Mineral 75:1311–1326

    Google Scholar 

  • Franzolin E, Schmidt M, Poli S (2010) Ternary Ca–Fe–Mg carbonates: subsolidus phase relations at 3.5 GPa and a thermodynamic solid solution model including order/disorder. Contrib Mineral Petrol. doi: 10.1007/s00410-010-0527-x

  • Gerya TV, Yuen DA (2003) Rayleigh-Taylor instabilities from hydration and melting propel ‘cold plumes’ at subduction zones. Earth Planet Sci Lett 212(1–2):47–62

    Article  Google Scholar 

  • Gill JB (1981) Orogenic andesite and plate techtonics. Springer, New York, p 390

    Google Scholar 

  • Gorman PJ, Kerrick DM, Connolly JAD (2006) Modeling open system metamorphic decarbonation of subducting slabs. Geochem Geophys Geosyst 7:Q04007. doi:10.1029/2005GC001125

    Article  Google Scholar 

  • Green DH, Lambert IB (1965) Experimental crystallization of anhydrous granite at high pressures and temperatures. J Geophys Res 70:5259–5268

    Article  Google Scholar 

  • Hawkesworth CJ, Gallagher K, Hergt JM, McDermott F (1993) Mantle and slab contributions in Arc Magmas. Annu Rev Earth Planet Sci 21:175–204

    Article  Google Scholar 

  • Hawkesworth C, Turner S, Peate D, McDermott F, van Calsteren P (1997a) Elemental U and Th variations in island arc rocks: implications for U-series isotopes. Chem Geol 139(1–4):207–221

    Article  Google Scholar 

  • Hawkesworth CJ, Turner SP, McDermott F, Peate DW, van Calsteren P (1997b) U-Th Isotopes in Arc Magmas: implications for element transfer from the subducted crust. Science 276(5312):551–555

    Article  Google Scholar 

  • Hermann J (2002) Experimental constraints on phase relations in subducted continental crust. Contrib Mineral Petrol 143(2):219–235

    Article  Google Scholar 

  • Hermann J, Spandler CJ (2008) Sediment melts at sub-arc depths: an experimental study. J Petrol 49(4):717–740

    Article  Google Scholar 

  • Higgins JA, Fischer WW, Schrag DP (2009) Oxygenation of the ocean and sediments: consequences for the seafloor carbonate factory. Earth Planet Sci Lett 284(1–2):25–33

    Article  Google Scholar 

  • Holloway JR, Blank JG (1994) Application of experimental results to C-O-H species in natural melts. In: Carrol, Holloway JR (eds) Review in mineralogy, vol 30. Mineralogical Society of America, Washington, pp 187–225

    Google Scholar 

  • Hoogewerff JA, Van Bergen MJ, Vroon PZ, Hertogen J, Wordel R, Sneyers A, Nasution A, Varekamp JC, Moens HLE, Mouchel D (1997) U-series, Sr—Nd—Pb isotope and trace-element systematics across an active island arc-continent collision zone: Implications for element transfer at the slab-wedge interface. Geochim Cosmochim Acta 61(5):1057–1072

    Article  Google Scholar 

  • Irving AJ, Wyllie PJ (1975) Subsolidus and melting relationships for calcite, magnesite and the join CaCO3-MgCO3 36 kb. Geochim Cosmochim Acta 39(1):35–53

    Article  Google Scholar 

  • Ishikawa T, Tera F (1999) Two isotopically distinct fluid components involved in the Mariana arc: Evidence from Nb/B ratios and B, Sr, Nd, and Pb isotope systematics. Geology 27(1):83–86

    Article  Google Scholar 

  • Jackson MG, Dasgupta R (2008) Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts. Earth Planet Sci Lett 276(1–2):175–186

    Article  Google Scholar 

  • Jackson MG, Hart SR, Koppers AAP, Staudigel H, Konter J, Blusztajn J, Kurz M, Russell JA (2007) The return of subducted continental crust in Samoan lavas. Nature 448(7154):684–687

    Article  Google Scholar 

  • Johnson MC, Plank T (1999) Dehydration and melting experiments constrain the fate of subducted sediments. Geochem Geophys Geosyst 1:1007. doi: 10.1029/1999GC000014

  • Kerrick DM, Connolly JAD (2001a) Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth’s mantle. Nature 411(6835):293–296

    Article  Google Scholar 

  • Kerrick DM, Connolly JAD (2001b) Metamorphic devolatilization of subducted oceanic metabasalts: implications for seismicity, arc magmatism and volatile recycling. Earth Planet Sci Lett 189(1–2):19–29

    Article  Google Scholar 

  • Komiya T, Hayashi M, Maruyama S, Yurimoto H (2002) Intermediate-P/T type Archean metamorphism of the Isua supracrustal belt: Implications for secular change of geothermal gradients at subduction zones and for Archean plate tectonics. Am J Sci 302(9):806–826

    Article  Google Scholar 

  • Koziol AM, Newton RC (1988) Redetermination of the anorthite breakdown reaction and improvement of the plagioclase-garnet-Al2SiO5-quartz barometer. Am Mineral 73:216–223

    Google Scholar 

  • Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279

    Google Scholar 

  • McDade P, Wood BJ, Van Westrenen W, Brooker R, Gudmundsson G, Soulard H, Najorka J, Blundy J (2002) Pressure corrections for a selection of piston-cylinder cell assemblies. Mineral Mag 66(6):1021–1028

    Article  Google Scholar 

  • Miller DM, Goldstein SL, Langmuir CH (1994) Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents. Nature 368(6471):514–520

    Article  Google Scholar 

  • Molina JF, Poli S (2000) Carbonate stability and fluid composition in subducted oceanic crust: an experimental study on H2O-CO2-bearing basalts. Earth Planet Sci Lett 176(3–4):295–310

    Article  Google Scholar 

  • Morgan GB VI, London D (2005) Effect of current density on the electron microprobe analysis of alkali aluminosilicate glasses. Am Mineral 90(7):1131–1138

    Article  Google Scholar 

  • Morris JD, Leeman WP, Tera F (1990) The subducted component in island arc lavas: constraints from Be isotopes and B–Be systematics. Nature 344:31–36

    Article  Google Scholar 

  • Moyen J-Fo, Stevens G, Kisters A (2006) Record of mid-Archaean subduction from metamorphism in the Barberton terrain, South Africa. Nature 442(7102):559–562

    Article  Google Scholar 

  • Nakajima T, Maruyama S, Uchiumi S, Liou JG, Wang X, Xiao X, Graham SA (1990) Evidence for late Proterozoic subduction from 700-Myr-old blueschists in China. Nature 346(6281):263–265

    Article  Google Scholar 

  • Nichols GT, Wyllie PJ, Stern CR (1994) Subduction zone melting of pelagic sediments constrained by melting experiments. Nature 371(6500):785–788

    Article  Google Scholar 

  • Nichols GT, Wyllie PJ, Stern CR (1996) Experimental melting of pelagic sediment: constraints relevant to subduction. In: Bebout GE, Scholl DW, Kirby SH, Platt JP (eds) Subduction: top to bottom. Geophysical monograph. American Geophysical Union, Washington, pp 293–298

    Google Scholar 

  • Papale P, Moretti R, Barbato D (2006) The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts. Chem Geol 229(1–3):78–95

    Article  Google Scholar 

  • Patino LC, Carr MJ, Feigenson MD (2000) Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input. Contrib Mineral Petrol 138(3):265–283

    Article  Google Scholar 

  • Peacock SM, Keken PEv, Holloway SD, Hacker BR, Abers GA, Fergason RL (2005) Thermal structure of the Costa Rica—Nicaragua subduction zone. Phys Earth Planet Inter 149(1–2):187–200

    Article  Google Scholar 

  • Pearce JA (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Orogenic and andesite and related rocks. Willey Chichester, New York, pp 525–548

    Google Scholar 

  • Pickering JM, Schwab BE, Johnson AD (1998) Off-center hot spots: double thermocouple determination of the thermal gradient in a 1.27 cm (1/2 in.) CaF2 piston-cylinder furnace assembly. Am Mineral 83:228–235

    Google Scholar 

  • Plank T, Langmuir CH (1993) Tracing trace elements from sediment input to volcanic output at subduction zones. Nature 362(6422):739–743

    Article  Google Scholar 

  • Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145(3–4):325–394

    Article  Google Scholar 

  • Poli S, Schmidt MW (2002) Petrology of subducting slabs. Annu Rev Earth Planet Sci 30(1):207–235

    Article  Google Scholar 

  • Poli S, Franzolin E, Fumagalli P, Crottini A (2009) The transport of carbon and hydrogen in subducted oceanic crust: an experimental study to 5 GPa. Earth Planet Sci Lett 278(3–4):350–360

    Article  Google Scholar 

  • Ryan JG, Morris J, Tera F, Leeman WP, Tsvetkov A (1995) Cross-arc geochemical variations in the kurile arc as a function of slab depth. Science 270(5236):625–627

    Article  Google Scholar 

  • Schmidt MW, Poli S (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett 163(1–4):361–379

    Article  Google Scholar 

  • Schmidt MW, Vielzeuf D, Auzanneau E (2004) Melting and dissolution of subducting crust at high pressures: the key role of white mica. Earth Planet Sci Lett 228(1–2):65–84

    Article  Google Scholar 

  • Shaw AM, Hilton DR, Fischer TP, Walker JA, Alvarado GE (2003) Contrasting He-C relationships in Nicaragua and Costa Rica: insights into C cycling through subduction zones. Earth Planet Sci Lett 214(3–4):499–513

    Article  Google Scholar 

  • Sizova E, Gerya T, Brown M, Perchuk LL (2010) Subduction styles in the precambrian: insight from numerical experiments. Lithos 116(3–4):209–229

    Google Scholar 

  • Spandler C, Yaxley G, Green D, Scott D (2010) Experimental phase and melting relations of metapelite in the upper mantle: implications for the petrogenesis of intraplate magmas. Contrib Mineral Petrol. doi: 10.1007/s00410-007-0236-2

  • Syracuse EM, Abers GA (2006) Global compilation of variations in slab depth beneath arc volcanoes and implications. Geochem Geophys Geosyst 7:Q05017. doi:10.1029/2005GC001045

  • Tatsumi Y, Hanyu T (2003) Geochemical modeling of dehydration and partial melting of subducting lithosphere: Toward a comprehensive understanding of high-Mg andesite formation in the Setouchi volcanic belt, SW Japan. Geochem Geophys Geosyst 4:1081. doi:10.1029/2003GC000530

  • Tera F, Brown L, Morris J, Sacks IS, Klein J, Middleton R (1986) Sediment incorporation in island-arc magmas: inferences from 10Be. Geochim Cosmochim Acta 50(4):535–550

    Article  Google Scholar 

  • Thomsen TB, Schmidt MW (2008) Melting of carbonated pelites at 2.5–5.0 GPa, silicate-carbonatite liquid immiscibility, and potassium-carbon metasomatism of the mantle. Earth Planet Sci Lett 267(1–2):17–31

    Article  Google Scholar 

  • Turner S, Hawkesworth C (1997) Constraints on flux rates and mantle dynamics beneath island arcs from Tonga-Kermadec lava geochemistry. Nature 389(6651):568–573

    Article  Google Scholar 

  • Turner S, Hawkesworth C, Rogers N, Bartlett J, Worthington T, Hergt J, Pearce J, Smith I (1997) 238U–230Th disequilibria, magma petrogenesis, and flux rates beneath the depleted Tonga-Kermadec island arc. Geochim Cosmochim Acta 61(22):4855–4884

    Article  Google Scholar 

  • van Keken PE, Kiefer B, Peacock SM (2002) High-resolution models of subduction zones: Implications for mineral dehydration reactions and the transport of water into the deep mantle. Geochem Geophys Geosyst 3:1056. doi:10.1029/2001GC000256

  • Wallace ME, Green DH (1988) An experimental determination of primary carbonatite magma composition. Nature 335(6188):343–346

    Article  Google Scholar 

  • Walter MJ, Sisson TW, Presnall DC (1995) A mass proportion method for calculating melting reactions and application to melting of model upper mantle lherzolite. Earth Planet Sci Lett 135(1–4):77–90

    Article  Google Scholar 

  • Williams DW, Kennedy GC (1969) Melting curve of diopside to 50 Kilobars. J Geophys Res 74:4359–4366

    Article  Google Scholar 

  • Xirouchakis D, Hirschmann MM, Simpson JA (2001) The effect of titanium on the silica content and on mineral-liquid partitioning of mantle-equilibrated melts. Earth Planet Sci Lett 65(14):2201–2217

    Google Scholar 

  • Yaxley G, Brey G (2004) Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: implications for petrogenesis of carbonatites. Contrib Mineral Petrol 146(5):606–619

    Article  Google Scholar 

  • Yaxley GM, Green DH (1994) Experimental demonstration of refractory carbonate-bearing eclogite and siliceous melt in the subduction regime. Earth Planet Sci Lett 128(3–4):313–325

    Article  Google Scholar 

  • Yaxley GM, Green DH (1996) Experimental reconstruction of sodic dolomitic carbonatite melts from metasomatised lithosphere. Contrib Mineral Petrol 124(3):359–369

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge critical, formal reviews by two anonymous reviewers. We thank Maik Pertermann for his help during the set-up stage of the Rice piston cylinder lab. Cin-Ty Lee is acknowledged for supplying the natural kyanite and Anne Peslier for help with the electron microprobe analyses. The work received support from Rice University start-up grant and NSF MARGINS grant OCE-0841035 to RD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyusei Tsuno.

Additional information

Communicated by M. W. Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuno, K., Dasgupta, R. Melting phase relation of nominally anhydrous, carbonated pelitic-eclogite at 2.5–3.0 GPa and deep cycling of sedimentary carbon. Contrib Mineral Petrol 161, 743–763 (2011). https://doi.org/10.1007/s00410-010-0560-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-010-0560-9

Keywords

Navigation