Skip to main content
Log in

Experimental determination of the fluid-absent melting relations in the pelitic system

Consequences for crustal differentiation

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

In order to provide additional constraints on models for partial melting of common metasediments, we have studied experimentally the melting of a natural metapelite under fluid-absent conditions. The starting composition contains quartz, plagioclase, biotite, muscovite, garnet, staurolite, and kyanite. Experiments were done in a halfinch piston-cylinder apparatus at 7, 10, and 12 kbar and at temperatures ranging from 750° to 1250° C. The following reactions account for the mineralogical changes observed at 10 kbar between 750° and 1250° C: Bi+Als+Pl+Q=L+Gt+(Kf), Ky=Sill, Gt+Als=Sp+Q, Gt=L+Sp+Q, and Sp+Q=L+Als.

The compositions of the phases (at T>875° C) were determined using an energy-dispersive system on a scanning electron microscope. The relative proportions of melt and crystals were calculated by mass balance and by processing images from the SEM. These constraints, together with other available experimental data, are used to propose a series of P-T, T-XH2O, and liquidus diagrams which represent a model for the fluid-present and fluid-absent melting of metapelites in the range 2–20 kbar and 600°–1250° C.

We demonstrate that, even under fluid-absent conditions, a large proportion (≈40%) of S-type granitic liquid is produced within a narrow temperature range (850°–875° C), as a result of the reaction Bi+Als+Pl+Q=L+Gt(+/-Kf). Such liquids, or at least some proportion of them, are likely to segregate from the source, leaving behind a residue composed of quartz, garnet, sillimanite, plagioclase, representing a characteristic assemblage of aluminous granulites.

The production of a large amount of melt at around 850° C also has the important effect of buffering the temperature of metamorphism. In a restitic, recycled, lower crust undergoing further metamorphism, temperature may reach values close to 1000° C due to the absence of this buffering effect. Partial melting is the main process leading to intracontinental differentiation. We discuss the crustal cross-section exposed in the North Pyrenean Zone in the context of our experiments and modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott RN Jr., Clarke DB (1979) Hypothetical liquidus relationships in the subsystem A12O3-FeO-MgO projected from quartz, alkali feldspar and plagioclase for a(H2O)<1. Can Mineral 17:549–560

    Google Scholar 

  • Albarède F (1976) Thermal models of post-tectonic decompression as examplified by the Haut-Allier granulites (Massif Central, France). Bull Soc Geol Fr 18:1023–1031

    Google Scholar 

  • Arps CES, van Calsteren C, Hilgen JD, Kuijper RP, den Tex E (1977) Mafic and related complexes in Galicia: an excursion guide. Leidse Geol Meded 51:3–94

    Google Scholar 

  • Bard JP (1969) Le métamorphisme régional progressif des Sierras d'Aracena en Andalousie occidentale (Espagne). Sa place dans le segment hercynien sub-ibérique. Thèse d'Etat, Montpellier, 398p

  • Blatt H, Middleton G, Murray R (1972) Origin of Sedimentary rocks. Prentice-Hall Inc., 634 p

  • Bohlen SR, Boettcher AL, Wall VJ, Clemens JD (1983) Stability of phlogopite-quartz and sanidine-quartz: a model for melting in the lower crust. Contrib Mineral Petrol 83:270–277

    Google Scholar 

  • Bohlen SR, Dollase WA, Wall VJ (1986) Calibration and applications of spinel equilibria in the system FeO-A12O3-SiO2. J Petrol 27:1143–1156

    Google Scholar 

  • Bohlen SR, Essene EJ, Boettcher AL (1980) Reinvestigation and application of olivine-quartz-orthopyroxene barometry. Earth Planet Sci Lett 47:1–10

    Google Scholar 

  • Burnham CW (1967) Hydrothermal fluids at the magmatic stage. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Holt, Reinhart and Winston, New York, pp 38–76

    Google Scholar 

  • Burnham CW (1979) The importance of volatile constituents. In: Yoder HS (ed) The evolution of the igneous rocks (Fiftieth anniversary perspectives), Princeton University Press, Princeton, pp 439–482

    Google Scholar 

  • Burnham CW, Nekvasil H (1986) Equilibrium properties of granite pegmatite magmas. Am Mineral 71:239–263

    Google Scholar 

  • Chopin C (1984) Coesite and pure pyrope in high-grade blueschists of the Western Alps: a first record and some consequences. Contrib Mineral Petrol 86:107–118

    Google Scholar 

  • Clemens JD (1981) The origin and evolution of some peraluminous acid magmas (experimental, geochemical and petrological investigations). Unpubl. Ph. D. Thesis, Monash University, Australia, 577 p

    Google Scholar 

  • Clemens JD (1984) Water contents of intermediate to silicic magmas. Lithos 11:213–287

    Google Scholar 

  • Clemens JD, Circone S, Navrotsky A, McMillan PF, Smith BK, Wall VS (1987) Phlogopite: new calorimetric data and the effect of stacking disorder on thermodynamic properties. Geochim Cosmochim Acta 51:2569–2578

    Google Scholar 

  • Clemens JD, Vielzeuf D (1987) Constraints on melting and magma production in the crust. Earth Planet Sci Lett 86:287–306

    Google Scholar 

  • Clemens JD, Wall VJ (1981) Crystallization and origin of some peraluminous (S-type) granitic magmas. Can Mineral 19:111–132

    Google Scholar 

  • Couturie JP, Kornprobst J (1977) Une interprétation géodynamique de l'évolution polyphasée des assemblages des granulites dans les chaînes bético-rifaines et le Massif Central Français. CR Somm Soc Geol Fr 5:289–291

    Google Scholar 

  • Debon F (1975) Les massifs granitoïdes à structure concentrique de Cauterets-Panticosa (Pyrénées Occidentales) et leurs ensembles. Sci de la Terre, Mem. n∘ 33, Nancy, 420 p

  • den Tex E, Engels JP, Vogel DE (1972) A high-pressure intermediate-temperature facies series in the Precambrian at Cabo Ortegal (Northwest Spain). 24th Int Geol Cong, 1972 Section 2:64–73

    Google Scholar 

  • Eggler DH (1973) Principles of melting of hydrous phases in silicate melt. Carnegie Inst Wash Yrbk 72:491–495

    Google Scholar 

  • Eggler DH, Holloway JR (1977) Partial Melting of peridotite in the presence of H2O and CO2: principles and review. Magma Genesis, Oregon Dept Geol Min Ind Bull 96:15–36

    Google Scholar 

  • Ellis DJ (1980) Osumilite-sapphirine-quartz granulites from Enderby Land, Antarctica: P-T conditions of metamorphism, implications for garnet-cordierite equilibria and the evolution of the deep crust. Contrib Mineral Petrol 74:201–210

    Google Scholar 

  • Ellis DJ (1986) Garnet-liquid Fe2+-Mg equilibria and implications for the beginning of melting in the crust and subduction zones. Am J Sci 286:765–791

    Google Scholar 

  • Engels JP (1972) The catazonal polymetamorphic rocks of Cabo Ortegal (NW Spain), a structural and petrofabric study. Leidse Geol Med 48:83–133

    Google Scholar 

  • England PC, Richardson SW (1977) The influence of erosion upon the mineral facies of rocks from different metamorphic environments. J Geol Soc Lond 134:201–213

    Google Scholar 

  • England PC, Thompson AB (1986) Some thermal and tectonic models for crustal melting in continental collision zones. In: Coward MP, Ries AC (eds) Collision tectonics. Geol Soc Spec Pub 19:83–94

  • Esperança S, Holloway JR (1986) The origin of the high-K latites from Camp Creek, Arizona: constraints from experiments with variable fO2 and aH2O. Contrib Mineral Petrol 93:504–512

    Google Scholar 

  • Eugster JP, Wones DR (1962) Stability relations of the ferruginous biotite, annite. J Petrol 3:82–125

    Google Scholar 

  • Ferry JM, Spear FS (1978) Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contrib Mineral Petrol 66:113–117

    Google Scholar 

  • Frey M, Hunziker JC, Franck W, Bocquet J, Dal Piaz GV, Jager E, Niggli E (1974) Alpine metamorphism of the Alps. A review. Schweiz Mineral Petrogr Mitt 54 2/3:247–291

    Google Scholar 

  • Fyfe WS, Price NJ, Thompson AB (1978) Fluids in the Earth's Crust. Developments in Geochemistry, 1, Elsevier, Amsterdam, 383 p

    Google Scholar 

  • Ghent ED, Stout MZ (1981) Geobarometry and geothermometry of plagioclase-biotite-garnet-muscovite assemblages. Contrib Mineral Petrol 76:92–97

    Google Scholar 

  • Goranson RW (1931) The solubility of water in granite magmas. Am J Sci 22:481–502

    Google Scholar 

  • Grant JA (1981) Orthoamphibole and orthopyroxene relations in high-grade metamorphism of pelitic rocks. Am J Sci 281:1127–1143

    Google Scholar 

  • Grant JA (1985) Phase equilibria in partial melting of pelitic rocks. In: Migmatites, Ashworth JR (ed) Glasgow, Blackie and Son, pp 86–144

    Google Scholar 

  • Grant JA (1986a) The isocon diagram — A simple solution to Gresens' equation for metasomatic alteration. Econ Geol 81:1976–1982

    Google Scholar 

  • Grant JA (1986b) Quartz-phlogopite-liquid equilibria and origins of charnockites. Am Mineral 71:1071–1075

    Google Scholar 

  • Green TH (1977) Garnet in silicic liquids and its possible use as a P-T indicator. Contrib Mineral Petrol 65:59–67

    Google Scholar 

  • Grew ES (1982a) Osumilite in the sapphirine-quartz terrane of Enderby Land, Antarctica: Implications for osumilite petrogenesis in the granulite facies. Am Mineral 67:762–787

    Google Scholar 

  • Grew ES (1982a) Sapphirine, kornerupine, and sillimanite+orthopyroxene in the charnockitic region of south India. J Geol Soc India 23, 10:469–505

    Google Scholar 

  • Harris NBW, Holland TJB (1984) The significance of cordierite-hypersthene assemblages from the Beitbridge region of the Central Limpopo belt; evidence for rapid decompression in the Archaean? Am Mineral 69:1036–1049

    Google Scholar 

  • Helgeson HC, Delany JM, Nesbitt HW, Bird DK (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Am J Sci 278-A:1–229

    Google Scholar 

  • Hensen BJ (1986) Theoretical phase relations involving cordierite and garnet revisited: the influence of oxygen fugacity on the stability of sapphirine and spinel in the system Mg-Fe-Al-Si-O. Contrib Mineral Petrol 92:362–367

    Google Scholar 

  • Hoffer E (1976) The reaction sillimanite+biotite+quartz=cordierite+K-feldspar+H2O and partial melting in the system K2O-FeO-MgO-Al2O3-SiO2-H2O. Contrib Mineral Petrol 55:127–130

    Google Scholar 

  • Hoffer E (1978) Melting reactions in aluminous metapelites: stability limits of biotite+sillimanite+quartz in the presence of albite. Neues Jahrb Mineral Monatsh 9:396–407

    Google Scholar 

  • Hoffer E, Grant JA (1980) Experimental investigation of the formation of cordierite-orthopyroxene parageneses in pelitic rocks. Contrib Mineral Petrol 73:15–22

    Google Scholar 

  • Holdaway MJ (1980) Chemical formulae and activity models for biotite, muscovite and chlorite applicable to pelitic metamorphic rocks. Am Mineral 65:711–719

    Google Scholar 

  • Holdaway MJ, Lee SM (1977) Fe-Mg cordierite stability in highgrade pelitic rocks based on experimental, theoretical and natural observations. Contrib Mineral Petrol 63:175–198

    Google Scholar 

  • Hoschek G (1969) The stability of staurolite and chloritoid and their significance in metamorphism of pelitic rocks. Contrib Mineral Petrol 22:208–232

    Google Scholar 

  • Jakobsson S, Holloway JR (1986) Crystal-liquid experiments in the presence of a C-O-H fluid buffered by graphite+iron+ wustite: experimental method and near liquidus relations in basanite. J Volcanol Geotherm Res 29:265–291

    Google Scholar 

  • Jakeš P (1969) Retrogressive changes of granulite-facies rocks — an example from the Bohemian Massif. Spec Publ Geol Soc, Australia, 2:367–374

    Google Scholar 

  • Johannes W (1978) Melting of plagioclase in the system Ab-An-H2O and Qz-Ab-An-H2O at PH2O=5 kbar, an equilibrium problem. Contrib Mineral Petrol 66:295–303

    Google Scholar 

  • Karsakov LP, Shuldiner VI, Lennikov AM (1975) Granulite complex of the eastern part of the Stanovoy fold province and the Chogar facies of depth. (in Russian), Izvest Akad Nauk SSSR Ser Geol 5:47–61

    Google Scholar 

  • Keesman I, Matthes S, Schreyer W, Seifert F (1971) Stability of almandine in the system FeO-(Fe2O3)-A12O3-SiO2-(H2O) at elevated pressures. Contrib Mineral Petrol 31:132–144

    Google Scholar 

  • Kushiro I, Yoder HS (1969) Melting of forsterite and enstatite at high pressure under hydrous conditions. Carnegie Inst Washington, Ann Rept Dir Geophys Lab 1967-68:153–161

    Google Scholar 

  • Lambert IB, Robertson JK, Wyllie PJ (1969) Melting reactions in the system KAlSi3O8-SiO2-H2O to 18.5 kilobars. Am J Sci 267:609–626

    Google Scholar 

  • Lasnier B (1977) Persistance d'une série granulitique au cœur du Massif Central français (Haut Allier). Les termes basiques, ultrabasiques et carbonatés. Thèse d'Etat, Nantes, 351 p

  • Le Breton N, Thompson AB (in prep.) Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis

  • Leterrier J (1972) Etude pétrographique et géochimique du massif granitique de Quérigut (Ariège). Sci de la Terre, Mem Fr, 23, 320 p

  • Lonker SW (1981) The P-T-X relations of the cordierite-garnet-sillimanite-quartz equilibrium. Am J Sci 281:1056–1090

    Google Scholar 

  • Luth WC (1967) Studies in the system KAlSiO4-Mg2SiO4-SiO2-H2O: I Inferred phase relations and petrologic application. J Petrol 8:372–416

    Google Scholar 

  • Luth WC, Jahns RH, Tuttle OF (1964) The granite system at pressures of 4 to 10 kilobars. J Geophys Res 9:759–773

    Google Scholar 

  • Maaløe S, Wyllie PJ (1975) Water content of a granite magma deduced from the sequence of crystallization determined experimentally with water-undersaturated conditions. Contrib Mineral Petrol 52:175–191

    Google Scholar 

  • Maijer C, Jansen JBH, Wevers J, Poorter RPE (1977)-Osumilite, a mineral new to Norway. Norsk geologisk Tidsskrift 57:187–188

    Google Scholar 

  • Marchand J (1974) Persistance d'une série granulitique au cœur du Massif Central français — Haut Allier. Les Termes acides. Thèse 3ème cycle, Nantes, 207 p

  • Michard-Vitrac A, Albarède F, Dupuis C, Taylor HPJ (1980) The genesis of Variscan (Hercynian) plutonic rocks: Inferences from Sr, Pb and O studies on the Maladeta igneous complex, central Pyrenees (Spain). Contrib Mineral Petrol 72:57–72

    Google Scholar 

  • Montel JM, Weber C, Pichavant M (1986) Biotite-sillimanite-spinel assemblages in high-grade metamorphic rocks: occurrences, chemographic analysis and thermobarometric interest. Bull Mineral 109:555–573

    Google Scholar 

  • Morse SA, Talley JH (1971) Sapphirine reactions in deep-seated granulites near Wilson lake, Central Labrador, Canada. Earth Planet Sci Lett 10:325–328

    Google Scholar 

  • Nekvasil H, Burnham CW (1987) The calculated individual effects of pressure and water content on phase equilibria in the granite system. In: BO Mysen (ed) Magmatic Processes: Physicochemical Principles. Geochem Soc Spec pub 1:433–445

  • Newton RC (1983) Geobarometry of high grade metamorphic rocks. Am J Sci 283 A:1–28

    Google Scholar 

  • Newton RC, Haselton HT (1981) Thermodynamics of the garnetplagioclase-Al2SiO5-quartz geobarometer. In: RC Newton, A Navrotsky, BJ Wood (Eds) Thermodynamics of minerals and melts, Springer, Berlin Heidelberg New York, 129–145

    Google Scholar 

  • Novak JM, Holdaway MJ (1981) Metamorphic petrology, mineral equilibria, and polymetamorphism in the Augusta quadrangle, south central Maine. Am Mineral 66:51–69

    Google Scholar 

  • Ouzegane K (1981) Le métamorphisme polyphasé granulitique de la région de Tamanrasset (Hoggar Central). Thèse 3ème cycle, Paris VI

  • Patera ES, Holloway JR (1982) Experimental determination of the spinel-garnet boundary in a Martian mantle composition. J Geophys Res [Suppl] 87:A31-A36

    Google Scholar 

  • Perchuk LL, Podlesskii KK, Aranovich LYA (1981) Calculation of thermodynamic properties of end-member minerals from natural parageneses. In: RC Newton, A Navrotsky, BJ Wood (eds) Thermodynamics of minerals and melts, Springer, New York, pp 111–129

    Google Scholar 

  • Peterson JW, Newton RC (1987) Reversed biotite+quartz melting reactions. EOS 68, 16:451

    Google Scholar 

  • Phillips GN (1980) Water activity changes across an amphibolitegranulite facies transition, Broken Hill, Australia. Contrib Mineral Petrol 75:377–386

    Google Scholar 

  • Pin C, Vielzeuf D (1983) Granulites and related rocks in Variscan median Europe: a dualistic interpretation. Tectonophysics 93:47–74

    Google Scholar 

  • Postaire B (1982) Systématique Pb commun et U-Pb sur zircons. Application aux roches de haut grade métamorphique impliquées dans la chaîne hercynienne (Europe de l'Ouest) et aux granulites de Laponie (Finlande). Thèse 3ème cycle, Rennes, 71 p

  • Respaut JP, Lancelot JR (1983) Datation de la mise en place synmétamorphe de la charnockite d'Ansignan (massif de l'Agly) par la méthode U — Pb sur zircons et monazites. N Jhb Miner Abh 147:21–34

    Google Scholar 

  • Robertson JK, Wyllie PJ (1971) Rock-water systems with special reference to the water-deficient region. Am J Sci 271:252–277

    Google Scholar 

  • Rutherford MJ (1969) An experimental determination of iron biotite-alkali feldspar equilibria. J Petrol 10:381–408

    Google Scholar 

  • Schairer JF, Yagi K (1952) The system FeO-Al2O3-SiO2. Am J Sci (Bowen vol) 471–512

  • Schreyer W, Yoder HS (1959) Stability of Mg-cordierite. Bull Geol Soc Amer 70:1672 (abstract)

    Google Scholar 

  • Seifert F (1976) Stability of the assemblage cordierite+K feldspar+Quartz. Contrib Mineral Petrol 51:179–185

    Google Scholar 

  • Shaw DM (1956) Geochemistry of pelitic rocks, III. Bull Geol Soc Am 67:919–934

    Google Scholar 

  • Shaw HR (1963) The four-phase curve sanidine-quartz-liquid-gas between 500 and 4000 bars. Am Mineral 48:883–896

    Google Scholar 

  • Spear FS, Selverstone J (1983) Quantitative P-T paths from zoned minerals: theory and tectonic applications. Contrib Mineral Petrol 83:348–357

    Google Scholar 

  • Storre B (1972) Dry melting of muscovite+quartz in the range Ps=7 kb to Ps=20 kb. Contrib Mineral Petrol 37:87–89

    Google Scholar 

  • Storre B, Karotke E (1972) Experimental data on melting reactions of muscovite+quartz in the system K2O-Al2O3-SiO2-H2O to 20 kb water pressure. Contrib Mineral Petrol 36:343–345

    Google Scholar 

  • Thompson AB (1976) Mineral reactions in pelitic rocks: I Prediction of P-T-X (Fe Mg) phase relations. II Calculation of some P-T-X (Fe-Mg) phase relations. Am J Sci 276:401–454

    Google Scholar 

  • Thompson AB (1982) Dehydration melting of pelitic rocks and the generation of H2O-undersaturated granitic liquids. Am J Sci 282:1567–1595

    Google Scholar 

  • Thompson AB, Algor JR (1977) Model systems for anatexis of pelitic rocks. I Theory of melting relations in the system KAlO2-NaAlO2-Al2O3-H2O. Contrib Mineral Petrol 3:247–269

    Google Scholar 

  • Thompson AB, Tracy RJ (1979) Model systems for anatexis of pelitic rocks. II Facies series melting and reactions in the system CaO-KAlO2-NaAlO2-Al2O3-SiO2-H2O. Contrib Mineral Petrol 70:429–438

    Google Scholar 

  • Turner FJ, Verhoogen J (1960) Igneous and metamorphic petrology. McGraw-Hill book company, Inc New-York Toronto London, 694 pp

    Google Scholar 

  • Tuttle OF, Bowen NL (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geol Soc Amer Mem 74:153 p

    Google Scholar 

  • vanDer Molen I, Paterson MS (1979) Experimental deformation of partially-melted granite. Contrib Mineral Petrol 70:229–318

    Google Scholar 

  • Vielzeuf D (1980a) Orthopyroxene and cordierite secondary assemblages in the granulitic paragneisses from Lherz and Saleix (French Pyrenees). Bull Minéral 103:66–78

    Google Scholar 

  • Vielzeuf D (1980b) Pétrologie des écailles granulitiques de la région de Lherz (Ariège-Zone Nord-Pyrénéenne). Introduction à l'étude expérimentale de l'association grenat (Alm-Pyr) -feldspath potassique. Thèse Sème cycle, Clermont-Ferrand, 219 p

  • Vielzeuf D (1983) The spinel and quartz associations in high grade xenoliths from Tallante (SE Spain) and their potential use in geothermometry and barometry. Contrib Mineral Petrol 82:301–311

    Google Scholar 

  • Vielzeuf D (1984) Relations de phases dans le faciès granulite et implications géodynamiques. L'exemple ndes granulites des Pyrénées. Thèse Doctorat d'Etat, Clermont-Ferrand, 288 p

  • Vielzeuf D, Boivin P (1984) An algorithm for the construction of petrogenetic grids — Application to some equilibria in granulitic paragneisses. Am J Sci 284:760–791

    Google Scholar 

  • Vielzeuf D, Kornprobst J (1984) Crustal splitting and the emplacement of the pyrenean lherzolites and granulites. Earth Planet Sci Lett 67:87–96

    Google Scholar 

  • Vogel DE (1967) Petrology of an eclogite and pyrigarnite-bearing polymetamorphic rock complex at Cabo Ortegal, NW Spain. Leidse Geol Med 40:121–213

    Google Scholar 

  • Waard D de (1965) A proposed subdivision of the granulite facies. Am J Sci 263:455–461

    Google Scholar 

  • Waters DJ (1986) Metamorphic history of sapphirine-bearing and related magnesian gneisses from Namaqualand, South Africa. J Petrol 27:541–565

    Google Scholar 

  • Wendlandt RF (1981) Inflence of CO2 on melting of model granulite facies assemblages: a model for the genesis of charnockites. Am Mineral 66:1164–1174

    Google Scholar 

  • White AJR, Chappell BW (1983) Granitoid types and their distribution in the Lachlan fold belt, Southeastern Australia. Geol Soc Am Mem 19:21–34

    Google Scholar 

  • Whitney JA (1975) The effects of pressure, temperature, and XH2O on phase assemblage in four synthetic rock compositions. J Geol 83:1–31

    Google Scholar 

  • Wones DR, Dodge FCW (1966) On the stability of phlogopite. Geol Soc Am Spec Pap 101:242 (abstr)

    Google Scholar 

  • Wones DR, Dodge FCW (1977) The stability of phlogopite in the presence of quartz and diopside. In: DG Fraser (ed) Thermodynamics in Geology. D Reidel, Dordrecht, 229–247

    Google Scholar 

  • Yoder HS Jr, Kushiro I (1969) Melting of a hydrous phase: phlogopite. Am J Sci 267A:558–582

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vielzeuf, D., Holloway, J.R. Experimental determination of the fluid-absent melting relations in the pelitic system. Contr. Mineral. and Petrol. 98, 257–276 (1988). https://doi.org/10.1007/BF00375178

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00375178

Keywords

Navigation