Skip to main content

Advertisement

Log in

Oxidised phase relations of a primitive basalt from Grenada, Lesser Antilles

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

A series of liquidus determinations is reported for a primitive arc basalt (15.4 wt % MgO, 45.5 wt % SiO2) from Grenada, Lesser Antilles, at anhydrous, H2O-undersaturated and H2O-saturated conditions in the pressure range 1 atm to 1.7 GPa. \(\hbox{Fe}^{3+}/\Upsigma\hbox{Fe}\) of high-pressure experimental glasses as measured by μXANES ranges from 0.44 to 0.86, corresponding to oxygen fugacities (fO2) between 3.2 and 7.8 log units above the nickel–nickel oxide redox buffer (NNO). 1-atm experiments conducted from NNO − 2.5 to + 3.8 show that increasing fO2 mainly increases the forsterite content (Fo) of olivine and has little effect on phase relations. The crystallisation sequence at lower crustal pressures for all water contents is forsteritic olivine + Cr-rich spinel followed by clinopyroxene. The anhydrous liquidus is depressed by 100 and 120 °C in the presence of 2.9 and 3.8 wt % H2O, respectively. H2O-undersaturated experiments at NNO + 3.2 to + 4.5 produce olivine of equivalent composition to the most primitive olivine phenocrysts in Grenadan picrites (Fo91.4). We conclude that direct mantle melts originating beneath Grenada could be as oxidised as ~NNO + 3, consistent with the uppermost estimates from olivine–spinel oxybarometry of high Mg basalts. μXANES analyses of olivine-bearing experimental glasses are used to develop a semi-empirical oxybarometer based on the value of \({{K}_{D}}_{\rm ol-melt}^{\rm Fe-Mg}\) when all Fe is assumed to be in the Fe2+ state (\({K}_{D}^{{\rm Fe}_T}\)). The oxybarometer is tested on an independent data set and is able to reproduce experimental fO2 to ≤1.2 log units. Experiments also show that the geochemically and petrographically distinct M- and C-series lavas on the island can be produced from hydrous melting of a common picritic source. Low pressures expand the olivine stability field at the expense of clinopyroxene, enriching an evolving melt in CaO and forcing differentiation to take place along a C-series liquid line of descent. Higher pressure conditions allow early and abundant clinopyroxene crystallisation, rapidly depleting the melt in both CaO and MgO, and thus creating the M-series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. We note that Matzen et al. (2011) consider experiments on highly magnesian compositions and find that K D for mafic and ultramafic systems is higher than the canonical value of 0.30. The original experimental database of Roeder and Emslie (1970) spans a range of K D  = 0.30 ± 0.03, and thus we choose to apply the upper limit.

References

  • Arculus R (1975) Melting behavior of two basanites in the range 10-35 kbar and the effect of TiO2 on the olivine-diopside reactions at high pressures. Carnegie Inst Wash Yearb 74:512–515

    Google Scholar 

  • Arculus R (1976) Geology and geochemistry of the alkali basalt–andesite association of Grenada, Lesser Antilles island arc. Geol Soc Am Bull 87(4):612–624

    Article  Google Scholar 

  • Arculus RJ (1973) The alkali basalt, andesite association of Grenada, Lesser Antilles. Unpublished PhD Thesis, University of Edinburgh

  • Asimow P, Ghiorso M (1998) Algorithmic modifications extending MELTS to calculate subsolidus phase relations. Am Mineral 83:1127–1132

    Google Scholar 

  • Baker DR, Eggler DH (1987) Compositions of anhydrous and hydrous melts coexisting with plagioclase, augite, and olivine or low-Ca pyroxene from 1 atm to 8 kbar; application to the Aleutian volcanic center of Atka. Am Mineral 72(1–2):12–28

    Google Scholar 

  • Ballhaus C, Berry R, Green D (1991) High pressure experimental calibration of the olivine–orthopyroxene–spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contrib Mineral Petrol 107(1):27–40

    Article  Google Scholar 

  • Barr J, Grove T (2010) AuPdFe ternary solution model and applications to understanding the fO2 of hydrous, high-pressure experiments. Contrib Mineral Petrol 160(5):631–643

    Article  Google Scholar 

  • Botcharnikov R, Koepke J, Holtz F, McCammon C, Wilke M (2005) The effect of water activity on the oxidation and structural state of Fe in a ferro-basaltic melt. Geochim Cosmochim Acta 69(21):5071–5085

    Article  Google Scholar 

  • Bouvier A, Métrich N, Deloule E (2010) Light elements, volatiles, and stable isotopes in basaltic melt inclusions from Grenada, Lesser Antilles: Inferences for magma genesis. Geochem Geophys Geosyst 11(9):Q09,004

    Article  Google Scholar 

  • Brandon A, Draper D (1996) Constraints on the origin of the oxidation state of mantle overlying subduction zones: an example from Simcoe, Washington, USA. Geochim Cosmochim Acta 60(10):1739–1749

    Article  Google Scholar 

  • Brooker R, Holloway J, Hervig R (1998) Reduction in piston-cylinder experiments: the detection of carbon infiltration into platinum capsules. Am Mineral 83:985–994

    Google Scholar 

  • Bryndzia L, Wood B, Dick H (1989) The oxidation state of the Earth’s sub-oceanic mantle from oxygen thermobarometry of abyssal spinel peridotites. Nature 341(6242):526–527

    Article  Google Scholar 

  • Burgisser A, Scaillet B (2007) Redox evolution of a degassing magma rising to the surface. Nature 445(7124):194–197

    Article  Google Scholar 

  • Carmichael I (1991) The redox states of basic and silicic magmas: a reflection of their source regions. Contrib Mineral Petrol 106(2):129–141

    Article  Google Scholar 

  • Christie D, Carmichael I, Langmuir C (1986) Oxidation states of mid-ocean ridge basalt glasses. Earth Planet Sci Lett 79(3-4):397–411

    Article  Google Scholar 

  • Cottrell E, Kelley K (2011) The oxidation state of Fe in morb glasses and the oxygen fugacity of the upper mantle. Earth Planet Sci Lett 305:270–282

    Article  Google Scholar 

  • Cottrell E, Kelley K, Lanzirotti A, Fischer R (2009) High-precision determination of iron oxidation state in silicate glasses using XANES. Chem Geol 268(3-4):167–179

    Article  Google Scholar 

  • Crabtree S, Lange R (2011) An evaluation of the effect of degassing on the oxidation state of hydrous andesite and dacite magmas: a comparison of pre- and post-eruptive Fe2+ concentrations. Contrib Mineral Petrol 163:209–224

    Article  Google Scholar 

  • Dalton JA, Wood BJ (1993) The partitioning of Fe and Mg between olivine and carbonate and the stability of carbonate under mantle conditions. Contrib Mineral Petrol 114(4):501–509

    Article  Google Scholar 

  • Devine J (1995) Petrogenesis of the basalt–andesite–dacite association of Grenada, Lesser Antilles island arc, revisited. J Volcanol Geoth Res 69(1-2):1–33

    Article  Google Scholar 

  • Droop G (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral Mag 51(361):431–435

    Article  Google Scholar 

  • Eggins S (1993) Origin and differentiation of picritic arc magmas, Ambae (Aoba), Vanuatu. Contrib Mineral Petrol 114(1):79–100

    Article  Google Scholar 

  • Evans K, Elburg M, Kamenetsky V (2012) Oxidation state of subarc mantle. Geology 40(9):783–786

    Article  Google Scholar 

  • Falloon T, Green D, Hatton C, Harris K (1988) Anhydrous partial melting of a fertile and depleted peridotite from 2 to 30 kb and application to basalt petrogenesis. J Petrol 29(6):1257–1282

    Article  Google Scholar 

  • Feig S, Koepke J, Snow J (2010) Effect of oxygen fugacity and water on phase equilibria of a hydrous tholeiitic basalt. Contrib Mineral Petrol 160(4):551–568

    Article  Google Scholar 

  • Foley S (2011) A reappraisal of redox melting in the Earth’s mantle as a function of tectonic setting and time. J Petrol 52(7–8):1363–1391

    Article  Google Scholar 

  • Frost D, McCammon C (2008) The redox state of Earth’s mantle. Annu Rev Earth Planet Sci 36:389–420

    Article  Google Scholar 

  • Gaetani G, Grove T (2003) Experimental constraints on melt generation in the mantle wedge. Am Geophys Monogr 138:107–134

    Article  Google Scholar 

  • Gaillard F, Scaillet B, Pichavant M, Bény JM (2001) The effect of water and fO2 on the ferric–ferrous ratio of silicic melts. Chem Geol 174(1):255–273

    Article  Google Scholar 

  • Gaillard F, Pichavant M, Scaillet B (2003) Experimental determination of activities of FeO and Fe2O3 components in hydrous silicic melts under oxidizing conditions. Geochim Cosmochim Acta 67(22):4389–4409

    Article  Google Scholar 

  • Gee L, Sack R (1988) Experimental petrology of melilite nephelinites. J Petrol 29(6):1233–1255

    Article  Google Scholar 

  • Ghiorso M, Sack R (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119(2):197–212

    Article  Google Scholar 

  • Graham A (1980) Genesis of the igneous rock suite of Grenada, Lesser Antilles. Unpublished PhD Thesis, University of Edinburgh

  • Green D (1973) Conditions of melting of basanite magma from garnet peridotite. Earth Planet Sci Lett 17(2):456–465

    Article  Google Scholar 

  • Gust D, Perfit M (1987) Phase relations of a high-Mg basalt from the Aleutian island arc: implications for primary island arc basalts and high-Al basalts. Contrib Mineral Petrol 97(1):7–18

    Article  Google Scholar 

  • Hall L, Brodie J, Wood B, Carroll M (2004) Iron and water losses from hydrous basalts contained in Au80Pd20 capsules at high pressure and temperature. Mineral Mag 68(1):75–81

    Article  Google Scholar 

  • Hart S, Davis K (1978) Nickel partitioning between olivine and silicate melt. Earth Planet Sci Lett 40(2):203–219

    Article  Google Scholar 

  • Hawkesworth C, O’Nions R, Arculus R (1979) Nd and Sr isotope geochemistry of island arc volcanics, Grenada, Lesser Antilles. Earth Planet Sci Lett 45(2):237–248

    Article  Google Scholar 

  • Heath E, Macdonald R, Belkin H, Hawkesworth C, Sigurdsson H (1998) Magmagenesis at Soufriere Volcano, St Vincent, Lesser Antilles Arc. J Petrol 39(10):1721–1764

    Article  Google Scholar 

  • Hirose K, Kushiro I (1993) Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet Sci Lett 114(4):477–489

    Article  Google Scholar 

  • Holloway J (2004) Redox reactions in seafloor basalts: possible insights into silicic hydrothermal systems. Chem Geol 210(1):225–230

    Article  Google Scholar 

  • Hoog J, Hattori K, Hoblitt R (2004) Oxidized sulfur-rich mafic magma at Mount Pinatubo, Philippines. Contrib Mineral Petrol 146(6):750–761

    Article  Google Scholar 

  • Jakobsson S (2012) Oxygen fugacity control in piston-cylinder experiments. Contrib Mineral Petrol 164:397–406

    Article  Google Scholar 

  • Jayasuriya KD, O’Neill HSC, Berry AJ, Campbell SJ (2004) A Mössbauer study of the oxidation state of Fe in silicate melts. Am Mineral 89(11–12):1597–1609

    Google Scholar 

  • Kägi R, Müntener O, Ulmer P, Ottolini L (2005) Piston-cylinder experiments on H2O-undersaturated Fe-bearing systems: an experimental setup approaching fO2 conditions of natural calc-alkaline magmas. Am Mineral 90(4):708–717

    Article  Google Scholar 

  • Kelley K, Cottrell E (2009) Water and the oxidation state of subduction zone magmas. Science 325(5940):605–608

    Article  Google Scholar 

  • Kelley K, Cottrell E (2012) The influence of magmatic differentiation on the oxidation state of Fe in a basaltic arc magma. Earth Planet Sci Lett 329:109–121

    Article  Google Scholar 

  • Kilinc A, Carmichael I, Rivers M, Sack R (1983) The ferric–ferrous ratio of natural silicate liquids equilibrated in air. Contrib Mineral Petrol 83(1–2):136–140

    Article  Google Scholar 

  • Klimm K, Blundy J, Green T (2008) Trace element partitioning and accessory phase saturation during H2O-saturated melting of basalt with implications for subduction zone chemical fluxes. J Petrol 49(3):523–553

    Article  Google Scholar 

  • Kopp H, Weinzierl W, Becel A, Charvis P, Evain M, Flueh E, Gailler A, Galve A, Hirn A, Kandilarov A et al (2011) Deep structure of the central Lesser Antilles Island Arc: relevance for the formation of continental crust. Earth Planet Sci Lett 304:121–134

    Article  Google Scholar 

  • Kress V, Carmichael I (1991) The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib Mineral Petrol 108(1):82–92

    Article  Google Scholar 

  • Kushiro I (1969) The system forsterite–diopside–silica with and without water at high pressures. Am J Sci 267:269–294

    Google Scholar 

  • Kushiro I, Mysen B (2002) A possible effect of melt structure on the Mg–Fe2 + partitioning between olivine and melt. Geochim Cosmochim Acta 66(12):2267–2272

    Article  Google Scholar 

  • Lee C, Leeman W, Canil D, Li Z (2005) Similar V/Sc systematics in MORB and arc basalts: implications for the oxygen fugacities of their mantle source regions. J Petrol 46(11):2313–2336

    Article  Google Scholar 

  • Lee C, Luffi P, Le Roux V, Dasgupta R, Albaréde F, Leeman W (2010) The redox state of arc mantle using Zn/Fe systematics. Nature 468(7324):681–685

    Article  Google Scholar 

  • Lindsley D (1983) Pyroxene thermometry. Am Mineral 68(5-6):477–493

    Google Scholar 

  • Macdonald R, Hawkesworth C, Heath E (2000) The Lesser Antilles volcanic chain: a study in arc magmatism. Earth Planet Sci Lett 49(1–4):1–76

    Google Scholar 

  • Mallmann G, O’Neill H (2009) The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). J Petrol 50(9):1765–1794

    Article  Google Scholar 

  • Martel C (2012) Eruption dynamics inferred from microlite crystallization experiments: application to Plinian and dome-forming eruptions of Mt. Pelée (Martinique, Lesser Antilles). J Petrol 53(4):699–725

    Article  Google Scholar 

  • Matzen A, Baker M, Beckett J, Stolper E (2011) Fe–Mg partitioning between olivine and high-magnesian melts and the nature of Hawaiian parental liquids. J Petrol 52(7-8):1243–1263

    Article  Google Scholar 

  • McDade P, Wood B, Van Westrenen W, Brooker R, Gudmundsson G, Soulard H, Najorka J, Blundy J (2002) Pressure corrections for a selection of piston-cylinder cell assemblies. Mineral Mag 66(6):1021–1028

    Article  Google Scholar 

  • Médard E, Grove TL (2008) The effect of H2O on the olivine liquidus of basaltic melts: experiments and thermodynamic models. Contrib Mineral Petrol 155(4):417–432

    Article  Google Scholar 

  • Médard E, McCammon C, Barr J, Grove T (2008) Oxygen fugacity, temperature reproducibility, and H2O contents of nominally anhydrous piston-cylinder experiments using graphite capsules. Am Mineral 93(11–12):1838–1844

    Article  Google Scholar 

  • Moore G, Righter K, Carmichael I (1995) The effect of dissolved water on the oxidation state of iron in natural silicate liquids. Contrib Mineral Petrol 120(2):170–179

    Article  Google Scholar 

  • O’Neill H, Wall V (1987) The olivine orthopyroxene spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth’s upper mantle. J Petrol 28(6):1169–1191

    Article  Google Scholar 

  • Papale P, Moretti R, Barbato D (2006) The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts. Chem Geol 229(1):78–95

    Article  Google Scholar 

  • Parkinson I, Arculus R (1999) The redox state of subduction zones: insights from arc-peridotites. Chem Geol 160(4):409–423

    Article  Google Scholar 

  • Parkinson I, Arculus R, Eggins S (2003) Peridotite xenoliths from Grenada, Lesser Antilles Island Arc. Contrib Mineral Petrol 146(2):241–262

    Article  Google Scholar 

  • Partzsch G, Lattard D, McCammon C (2004) Mössbauer spectroscopic determination of Fe3+ /Fe2+ in synthetic basaltic glass: a test of empirical fO2 equations under superliquidus and subliquidus conditions. Contrib Mineral Petrol 147(5):565–580

    Article  Google Scholar 

  • Pichavant M, MacDonald R (2007) Crystallization of primitive basaltic magmas at crustal pressures and genesis of the calc-alkaline igneous suite: experimental evidence from St Vincent, Lesser Antilles arc. Contrib Mineral Petrol 154(5):535–558

    Article  Google Scholar 

  • Pichavant M, Mysen B, MacDonald R (2002) Source and H2O content of high-MgO magmas in island arc settings: an experimental study of a primitive calc-alkaline basalt from St. Vincent, Lesser Antilles arc. Geochim Cosmochim Acta 66(12):2193–2209

    Article  Google Scholar 

  • Pilet S, Baker M, Stolper E (2008) Metasomatized lithosphere and the origin of alkaline lavas. Science 320(5878):916–919

    Article  Google Scholar 

  • Pilet S, Ulmer P, Villiger S (2010) Liquid line of descent of a basanitic liquid at 1.5 GPa: constraints on the formation of metasomatic veins. Contrib Mineral Petrol 159(5):621–643

    Article  Google Scholar 

  • Putirka K, Perfit M, Ryerson F, Jackson M (2007) Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling. Chem Geol 241(3-4):177–206

    Article  Google Scholar 

  • Roeder P, Emslie R (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29(4):275–289

    Article  Google Scholar 

  • Sack R, Carmichael I, Rivers M, Ghiorso M (1981) Ferric–ferrous equilibria in natural silicate liquids at 1 bar. Contrib Mineral Petrol 75(4):369–376

    Article  Google Scholar 

  • Shimizu N, Arculus R (1975) Rare earth element concentrations in a suite of basanitoids and alkali olivine basalts from Grenada, Lesser Antilles. Contrib Mineral Petrol 50(4):231–240. doi:10.1007/BF00394850

    Article  Google Scholar 

  • Sisson T, Grove T (1993) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113(2):143–166

    Article  Google Scholar 

  • Sisson T, Ratajeski K, Hankins W, Glazner A (2005) Voluminous granitic magmas from common basaltic sources. Contrib Mineral Petrol 148(6):635–661

    Article  Google Scholar 

  • Thirlwall M, Graham A (1984) Evolution of high-Ca, high-Sr C-series basalts from Grenada, Lesser Antilles: the effects of intra-crustal contamination. J Petrol 141(3):427–445

    Google Scholar 

  • Thirlwall M, Graham A, Arculus R, Harmon R, Macpherson C (1996) Resolution of the effects of crustal assimilation, sediment subduction, and fluid transport in island arc magmas: Pb–Sr–Nd–O isotope geochemistry of Grenada, Lesser Antilles. Geochim Cosmochim Acta 60(23):4785–4810

    Article  Google Scholar 

  • Toplis M (2005) The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib Mineral Petrol 149(1):22–39

    Article  Google Scholar 

  • Van Soest M, Hilton D, Macpherson C, Mattey D (2002) Resolving sediment subduction and crustal contamination in the Lesser Antilles Island Arc: a combined He–O–Sr isotope approach. J Petrol 43(1):143–170

    Article  Google Scholar 

  • Vannucci R, Tiepolo M, Defant M, Kepezhinskas P (2007) The metasomatic record in the shallow peridotite mantle beneath Grenada (Lesser Antilles arc). Lithos 99(1–2):25–44

    Article  Google Scholar 

  • Wadge G, Shepherd J (1984) Segmentation of the Lesser Antilles subduction zone. Earth Planet Sci Lett 71(2):297–304

    Article  Google Scholar 

  • Weaver S, Wallace P, Johnston A (2011) A comparative study of continental vs. intraoceanic arc mantle melting: experimentally determined phase relations of hydrous primitive melts. Earth Planet Sci Lett 308:97–106

    Article  Google Scholar 

  • Wood B, Bryndzia L, Johnson K (1990) Mantle oxidation state and its relationship to tectonic environment and fluid speciation. Science 248(4953):337–345

    Article  Google Scholar 

Download references

Acknowledgments

C.C.S. was supported by a European Research Council (ERC) PhD studentship. E.M., R.A.B and J.D.B. acknowledge support from an ERC Advanced Grant (CRITMAG) and the Leverhulme Trust, and M.C.S.H. from a Royal Society University Research Fellowship. We would like to thank J. Craven for supplying natural samples, C-J. de Hoog for assistance with the Edinburgh ion probe and S. Kearns for help with the Bristol microprobe. We gratefully acknowledge the loan of reference materials (NMNH117393) from the Department of Mineral Sciences, Smithsonian Institution and thank the Diamond Light Source, UK, for beam time. The constructive reviews of C.-T.A. Lee, E. Médard and editor T.L. Grove considerably improved the manuscript and are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. C. Stamper.

Additional information

Communicated by T. L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (482 KB)

Electronic supplementary material

Electronic supplementary material

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stamper, C.C., Melekhova, E., Blundy, J.D. et al. Oxidised phase relations of a primitive basalt from Grenada, Lesser Antilles. Contrib Mineral Petrol 167, 954 (2014). https://doi.org/10.1007/s00410-013-0954-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-013-0954-6

Keywords

Navigation