Skip to main content
Log in

The effect of H2O on the olivine liquidus of basaltic melts: experiments and thermodynamic models

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We designed and carried out experiments to investigate the effect of H2O on the liquidus temperature of olivine-saturated primitive melts. The effect of H2O was isolated from other influences by experimentally determining the liquidus temperatures of the same melt composition with various amounts of H2O added. Experimental data indicate that the effect of H2O does not depend on pressure or melt composition in the basaltic compositional range. The influence of H2O on melting point lowering can be described as a polynomial function \( {\left( {\rm C^{{\rm melt}}_{{\rm{H_{2} O}}} \;{\text{in}}\;{\text{wt}}\% } \right)}:\Updelta {T}\;{\left( {^{ \circ }\rm C} \right)} = 40.4 {\left( {\rm C^{{\rm melt}}_{{\rm {H_{2} O}}} } \right)} - 2.97 {\left( {\rm C^{{\rm melt}}_{{\rm {H_{2} O}}} } \right)}^{2} + 0.0761 {\left( {\rm C^{{\rm melt}}_{{\rm{H_{2} O}}} } \right)}^{3} . \) This expression can be used to account for the effect of H2O on olivine-melt thermometers, and can be incorporated into fractionation models for primitive basalts. The non-linear effect of H2O indicates that incorporation of H2O in silicate melts is non-ideal, and involves interaction between H2O and other melt components. The simple speciation approach that seems to account for the influence of H2O in simple systems (albite-H2O, diopside-H2O) fails to describe the mixing behavior of H2O in multi-component silicate melts. However, a non-ideal solution model that treats the effect of H2O addition as a positive excess free energy can be fitted to describe the effect of melting point lowering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almeev R, Holtz F, Koepke J, Parat F, Botcharnikov RE (2007) The effect of H2O on olivine crystallization in MORB: experimental calibration at 200 MPa. Am Mineral 92:670–674

    Article  Google Scholar 

  • Anderson ATJ (1979) Water in some hypersthenic magmas. J Geol 87:509–531

    Google Scholar 

  • Ariskin AA, Barmina GS (2004) COMAGMAT: development of a magma crystallization model and its petrological implications. Geochem Int 42(Suppl 1):S1–S157

    Google Scholar 

  • Armstrong JT (1995) CITZAF—a package of correction programs for the quantitative electron microbeam X-ray analysis of thick polished materials, thin-films, and particles. Microbeam Anal 4:177–200

    Google Scholar 

  • Asimow PD, Langmuir CH (2003) The importance of water to oceanic mantle melting regimes. Nature 421:815–820

    Article  Google Scholar 

  • Baker MB, Grove TL, Price RC (1994) Primitive basalts and andesites from the Mt. Shasta region, N. California: products of varying melt fraction and water content. Contrib Mineral Petrol 118:111–129

    Article  Google Scholar 

  • Baker MB, Hirschmann MM, Ghiorso MS, Stolper EM (1995) Compositions of near-solidus peridotite melts from experiments and thermodynamic calculations. Nature 375:308–311

    Article  Google Scholar 

  • Bartels KS, Kinzler RJ, Grove TL (1991) High pressure phase relations of primitive high-alumina basalts from Medicine Lake volcano, northern California. Contrib Mineral Petrol 108:253–270

    Article  Google Scholar 

  • Bohlen SR, Boettcher AL, Wall VJ (1982) The system albite—H2O–CO2: a model for melting and activities of water at high pressures. Am Mineral 67:451–462

    Google Scholar 

  • Bottinga Y, Weill DF (1972) The viscosity of magmatic silicate liquids: a model for calculation. Am J Sci 272:438–475

    Article  Google Scholar 

  • Boyd FR, England JL (1960) Apparatus for phase equilibrium measurements of pressures up to 50 kbars and temperatures up to 1750°C. J Geophys Res 65:741–748

    Google Scholar 

  • Courtial P, Dingwell DB (1999) Densities of melts in the CaO–MgO–Al2O3–SiO2 system. Am Mineral 84:465–476

    Google Scholar 

  • Danyushevsky LV (2001) The effect of small amounts of H2O on crystallisation of mid-ocean ridge and backarc basin magmas. J Volcanol Geotherm Res 110:265–280

    Article  Google Scholar 

  • Danyushevsky LV, Falloon TJ, Sobolev AV, Crawford AJ, Carroll M, Price RC (1993) The H2O content of basalt glasses from southwest Pacific back-arc basins. Earth Planet Sci Lett 117:347–362

    Article  Google Scholar 

  • David BTC, England JL (1964) The melting of forsterite up to 50 kilobars. J Geophys Res 69:1113–1116

    Article  Google Scholar 

  • Devine JD, Gardner JE, Brack HP, Layne GD, Rutherford MJ (1995) Comparison of microanalytical methods for estimating H2O contents of silicic volcanic glasses. Am Mineral 80:319–328

    Google Scholar 

  • Dixon JE, Clague DA, Wallace P, Poreda R (1997) Volatiles in alkalic basalts from the North Arch volcanic field, Hawaii: extensive degassing of deep submarine-erupted alkalic series lavas. J Petrol 38:911–939

    Article  Google Scholar 

  • Dixon JE, Stolper EM, Holloway JR (1995) An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part I: calibration and solubility models. J Petrol 36:1607–1631

    Google Scholar 

  • Donnelly-Nolan JM, Champion DE, Grove TL, Baker MB, Taggart JE, Bruggman PE (1991) The Giant Crater lava-field—geology and geochemistry of a compositionally zoned, high-alumina basalt to basaltic andesite eruption at Medicine Lake Volcano, California. J Geophys Res 96:21843–21863

    Article  Google Scholar 

  • Draper D, Johnson A (1992) Anhydrous PT phase relations of an Aleutian high-MgO basalt: an investigation of the role of olivine-liquid reaction in the generation of arc high-alumina basalts. Contrib Mineral Petrol 112:501–519

    Article  Google Scholar 

  • Falloon TJ, Danyushevsky LV (2000) Melting of refractory mantle at 1.5, 2 and 2.5 GPa under anhydrous and H2O-undersaturated conditions: implications for the petrogenesis of high-Ca boninites and the influence of subduction components on mantle melting. J Petrol 41:257–283

    Article  Google Scholar 

  • Ford CE, Russell DG, Craven JA, Fisk MR (1983) Olivine-liquid equilibria: temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca and Mn. J Petrol 24:256–265

    Google Scholar 

  • Gaetani GA, Grove TL (1998) The influence of water on melting of mantle peridotite. Contrib Mineral Petrol 131:323–346

    Article  Google Scholar 

  • Ghiorso MS (2004) An equation of state for silicate melts. III. Analysis of stoichiometric liquids at elevated pressure: shock compression data, molecular dynamics simulations and mineral fusion curves. Am J Sci 304(8–9):752–810

    Article  Google Scholar 

  • Ghiorso MS, Hirschmann MM, Reiners PW, Kress VC (2002) The pMELTS: a revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochem Geophys Geosyst 3. doi:10.1029/2001GC000217

  • Ghiorso MS, Sack RO (1995) Chemical mass-transfer in magmatic processes 4. A revised and internally consistent thermodynamic model for the interpolation of solid-liquid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212

    Article  Google Scholar 

  • Gillet P, Richet P, Guyot F, Fiquet G (1991) High-temperature thermodynamic properties of forsterite. J Geophys Res 96:11805–11816

    Article  Google Scholar 

  • Green DH, Falloon TJ, Eggins SM, Yaxley GM (2001) Primary magmas and mantle temperatures. Eur J Mineral 13:437–451

    Article  Google Scholar 

  • Grove TL (1981) Use of PtFe to eliminate the iron-loss problem in 1 atmosphere gas mixing experiments: theoretical and practical considerations. Contrib Mineral Petrol 78:298–304

    Article  Google Scholar 

  • Grove TL, Baker MB (1984) Phase equilibrium controls on tholeiitic versus calc-alkaline differentiation trends. J Geophys Res 89:3253–3274

    Article  Google Scholar 

  • Grove TL, Baker MB, Price RC, Parman SW, Elkins-Tanton LT, Chatterjee N, Müntener O (2005) Magnesian andesite and dacite lavas from Mt. Shasta, northern California: products of fractional crystallization of H2O-rich mantle melts. Contrib Mineral Petrol 148:542–565

    Article  Google Scholar 

  • Grove TL, Chatterjee N, Parman SW, Médard E (2006) The influence of H2O on mantle wedge melting. Earth Planet Sci Lett 249:74–89

    Article  Google Scholar 

  • Grove TL, Donnelly-Nolan JM, Housh T (1997) Magmatic processes that generated the rhyolite of Glass Mountain, Medicine Lake Volcano, N California. Contrib Mineral Petrol 127:205–223

    Article  Google Scholar 

  • Grove TL, Elkins-Tanton LT, Parman SW, Chatterjee N, Müntener O, Gaetani GA (2003) Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib Mineral Petrol 145:515–533

    Article  Google Scholar 

  • Gust DA, Perfit MR (1987) Phase relations of a high-Mg basalt from the Aleutian Island Arc: implications for primary island arc basalts and high-Al basalts. Contrib Mineral Petrol 97:7–18

    Article  Google Scholar 

  • Hamilton DL, Burnham CW, Osborn EF (1964) The solubility of water and effects of oxygen fugacity on crystallization in mafic magmas. J Petrol 5:21–39

    Google Scholar 

  • Hays JF (1966) Lime-alumina-silica. Carnegie Inst Wash Yearb 65:234–239

    Google Scholar 

  • Hirose K (1997) Melting experiments on lherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts. Geology 25:42–44

    Article  Google Scholar 

  • Holbig ES, Grove TL (2007) Mantle melting beneath the Tibetan Plateau: experimental constraints on ultra-potassic magmatism. J Geophys Res (in press)

  • Kägi R, Müntener O, Ulmer P, Ottolini L (2005) Piston-cylinder experiments on H2O undersaturated Fe-bearing systems: an experimental setup approaching fO2 conditions of natural calc-alkaline magmas. Am Mineral 90:708–717

    Article  Google Scholar 

  • Krawczynski MJ, Grove TL, Médard E, Barr JA, Till CB, Behrens H (2006) The fate of wet mantle melts: fractionation crystallization processes preserved in magmatic inclusions, Mt. Shasta CA. Eos Trans. AGU, Fall Meet. Suppl., Abstract V14B-06

  • Kushiro I (1969) The system forsterite-diopside-silica with and without water at high pressures. Am J Sci 267:269–294

    Google Scholar 

  • Langmuir CH, Bézos A, Escrig S, Parman SW (2006) Chemical systematics and hydrous melting of the mantle in back-arc basins. In: Back-arc spreading systems: geological, biological, chemical, and physical interactions. Geophysical Monograph 166, American Geophysical Union pp 87–146

  • Laporte D, Toplis MJ, Seyler M, Devidal J-L (2004) A new experimental technique for extracting liquids from peridotite at very low degrees of melting: application to partial melting of depleted peridotite. Contrib Mineral Petrol 146:463–484

    Article  Google Scholar 

  • Maksimov AP (2003) Effect of water on the melting curves of minerals: the olivine-melt equilibrium. Geochem Int 41:947–958

    Google Scholar 

  • Médard E, Schmidt MW, Schiano P, Ottolini L (2006) Melting of amphibole-bearing wehrlites: an experimental study on the origin of ultra-calcic nepheline-normative melts. J Petrol 47:481–504

    Article  Google Scholar 

  • Michael PJ, Chase RL (1987) The influence of primary magma composition, H2O and pressure on mid-ocean ridge basalt differentiation. Contrib Mineral Petrol 96:245–263

    Article  Google Scholar 

  • Moore G, Vennemann T, Charmichael ISE (1998) An empirical model for the solubility of H2O in magmas to 3 kilobars. Am Mineral 83:36–42

    Google Scholar 

  • Mysen BO, Boettcher AL (1975) Melting of a hydrous mantle: I. Phase relations of natural peridotite at high pressures and temperatures with controlled activities of water, carbon dioxide, and hydrogen. J Petrol 16:520–548

    Google Scholar 

  • Nicholls J (1980) A simple thermodynamic model for estimating the solubitlity of H2O in magmas. Contrib Mineral Petrol 74:211–220

    Article  Google Scholar 

  • Parman SW, Grove TL (2004) Harzburgite melting with and without H2O: experimental data and predictive modeling. J Geophys Res 109:B02201. doi:10.1029/2003JB002566

    Article  Google Scholar 

  • Pichavant M, Mysen BO, Macdonald R (2002) Source and H2O content of high-MgO magmas in island arc settings: an experimental study of a primitive calc-alkaline basalt from St. Vincent, Lesser Antilles arc. Geochim Cosmochim Acta 66:2193–2209

    Article  Google Scholar 

  • Putirka K (2005) Mantle potential temperatures at Hawaii, Iceland, and the mid-ocean ridge system, as inferred from olivine phenocrysts: evidence for thermally-driven mantle plumes. Geochem Geophys Geosyst 6:Q05L08. doi:10.1029/2005GC000915

    Article  Google Scholar 

  • Richet P, Bottinga Y (1985) Heat capacity of aluminum-free liquid silicates. Geochim Cosmochim Acta 49:471–486

    Article  Google Scholar 

  • Richet P, Leclerc F, Benoist L (1993) Melting of forsterite and spinel with implications for the glass transition of Mg2SiO4 liquid. Geophys Res Lett 20:1675–1678

    Article  Google Scholar 

  • Robie RA, Hemingway BS (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10Pa) pressure and higher temperatures. USGS Bulletin 2131

  • Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 19:275–289

    Article  Google Scholar 

  • Silver L, Stolper EM (1985) A thermodynamic model for hydrous silicate melts. J Geol 93:161–178

    Article  Google Scholar 

  • Simons K, Dixon JE, Schilling J-G, Kingsley R, Poreda R (2002) Volatiles in basaltic glasses from the Easter-Sala y Gomez seamount chain and Easter microplate: implications for geochemical cycling of volatile elements. Geochem Geophys Geosyst 3:1039. doi:10.1029/2001GC000173

    Article  Google Scholar 

  • Sisson TW, Grove TL (1993a) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113:143–166

    Article  Google Scholar 

  • Sisson TW, Grove TL (1993b) Temperatures and H2O contents of low-MgO high-alumina basalts. Contrib Mineral Petrol 113:167–184

    Article  Google Scholar 

  • Sisson TW, Layne GD (1993) H2O in basalt and andesite glass inclusions from four subduction-related volcanoes. Earth Planet Sci Lett 117:619–635

    Article  Google Scholar 

  • Sobolev AV, Chaussidon M (1996) H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: implications for H2O storage and recycling in the mantle. Earth Planet Sci Lett 137:45–55

    Article  Google Scholar 

  • Spilliaert N, Allard P, Métrich N, Sobolev AV (2006) Melt inclusion record of the conditions of ascent, degassing and extrusion of volatile-rich alkali basalt during the powerful 2002 flank eruption of Mount Etna (Italy). J Geophys Res 111:B04203. doi:10.1029/2005JB003934

    Article  Google Scholar 

  • Stolper EM, Newman S (1994) The role of water in the petrogenesis of Mariana trough magmas. Earth Planet Sci Lett 121:293–325

    Article  Google Scholar 

  • Sugawara T (2000) Empirical relationships between temperature, pressure, and MgO content in olivine and pyroxene saturated liquid. J Geophys Res 106:8457–8472

    Article  Google Scholar 

  • Toop GW, Samis CS (1962) Activities of ions in silicate melts. Trans Metall Soc AIME 224:878–887

    Google Scholar 

  • Turner S, Arnaud N, Liu J, Hawkesworth NRC, Harris N, Kelley S, VanCalsteren P, Deng W (1996) Post-collision, shoshonitic volcanism on the Tibetan plateau: implications for convective thinning of the lithosphere and the source of ocean island basalts. J Petrol 37:45–71

    Article  Google Scholar 

  • Watson EB, Wark DA, Price JD, van Orman JA (2002) Mapping the thermal structure of solid-media pressure assemblies. Contrib Mineral Petrol 142:640–652

    Article  Google Scholar 

  • Wiser NM, Wood BJ (1991) Experimental determination of activities in Fe-Mg olivine at 1400 K. Contrib Mineral Petrol 108(1):146–153

    Article  Google Scholar 

  • Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72

    Article  Google Scholar 

  • Yoder HSJ, Tilley CE (1962) Origin of basalt magmas: an experimental study of natural and synthetic rock systems. J Petrol 3:342–532

    Google Scholar 

Download references

Acknowledgments

Technical assistance provided by N. Shimizu with the ion microprobe is greatly appreciated. Critical comments by two anonymous reviewers greatly improved the manuscript. This research was supported by grants EAR0440172, EAR0538179 and EAR0440045 from the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Médard.

Additional information

Communicated by J. Hoefs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Médard, E., Grove, T.L. The effect of H2O on the olivine liquidus of basaltic melts: experiments and thermodynamic models. Contrib Mineral Petrol 155, 417–432 (2008). https://doi.org/10.1007/s00410-007-0250-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-007-0250-4

Keywords

Navigation