Skip to main content
Log in

Scale of pluton/wall rock interaction near May Lake, Yosemite National Park, CA, USA

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Interaction of magma with wall rock is an important process in igneous petrology, but the mechanisms by which interactions occur are poorly known. The western outer granodiorite of the Cretaceous Tuolumne Intrusive Suite of Yosemite National Park, California, intruded a variety of metasedimentary and igneous wall rocks at 93.1 Ma. The May Lake metamorphic screen is a metasedimentary remnant whose contact zone exhibits a variety of interaction phenomena including xenolith incorporation, disaggregation, and partial melting. The chemical contrast of these metasedimentary rocks with the invading pluton provides an excellent measure of pluton/wall rock interactions. Wall rock xenoliths (mostly pelitic quartzite) are predominantly located in an elongate horizon surrounded by a hybridized fine-grained granodiorite. Initial Sr and Nd isotopic ratios of the hybridized granodiorite indicate significant local incorporation of crustal material. Major- and trace-element geochemical data indicate that contamination of the granodiorite occurred via selective assimilation of both high-K and low-K, high-silica partial melts derived from pelitic quartzite. Although the hybridized granodiorite shows significant amounts of contamination, adjacent to xenoliths the proportion of contamination is undetectable more than a meter away. These results indicate that the chemical and isotopic variability of the Tuolumne Intrusive Suite is not caused by magma contamination via in situ wall rock assimilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Al-Rawi Y, Carmichael ISE (1967) A note on the natural fusion of granite. Am Mineral 52:1806–1814

    Google Scholar 

  • Baedecker PA, Grossman JN, Buttleman KP (1998) National geochemical data base, PLUTO geochemical data base for the United States. US Geological Survey CD-ROM

  • Barnes CG, Dumond G, Yoshinobu AS, Prestvik T (2004) Assimilation and crystal accumulation in a mid-crustal magma chamber: the Sausfjellet pluton, north-central Norway. Lithos 75:389–412. doi:10.1016/j.lithos.2004.04.036

    Article  Google Scholar 

  • Barnes CG, Prestvik T, Sundvoll B, Surratt D (2005) Pervasive assimilation of carbonate and silicate rocks in the Hortavær igneous complex, north-central Norway. Lithos 80:179–199. doi:10.1016/j.lithos.2003.11.002

    Article  Google Scholar 

  • Bateman PC (1992) Plutonism in the central part of the Sierra Nevada Batholith, California. US Geological Survey Professional Paper, Report P 1483, p 186

  • Bateman PC, Chappell BW, Kistler RW, Peck DL, Busacca AJ (1988) Tuolumne Meadows Quadrangle, California; analytic data, US Geological Survey Bulletin, Report: B 1819 8755-531X

  • Bea F, Pereira MD, Stroh A (1994) Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP–MS study). Chem Geol 117:291–312. doi:10.1016/0009-2541(94)90133-3

    Article  Google Scholar 

  • Beard JS, Abitz RJ, Lofgren GE (1993) Experimental melting of crustal xenoliths from Kilbourne Hole, New Mexico and implications for the contamination and genesis of magmas. Contrib Mineral Petrol 115:88–102. doi:10.1007/BF00712981

    Article  Google Scholar 

  • Beard JS, Ragland PC, Crawford ML (2005) Reactive bulk assimilation: a model for the crust-mantle mixing in silicic magmas. Geology 33:681–684. doi:10.1130/G21470.1

    Article  Google Scholar 

  • Bhadra S, Das S, Bhattacharya A (2007) Shear zone-hosted migmatites (Eastern India): the role of dynamic melting in the generation of REE-depleted felsic melts, and implications for disequilibrium melting. J Petrol 48:435–457. doi:10.1093/petrology/egl066

    Article  Google Scholar 

  • Bowen NL (1928) The evolution of igneous rocks. Princeton University Press Princeton, New Jersey

    Google Scholar 

  • Burchfiel BC, Davis GA (1972) Structural framework and evolution of the southern part of the Cordilleran orogen, western United States. Am J Sci 272:97–118

    Google Scholar 

  • Carrington DP, Watt GR (1995) A geochemical and experimental study of the role of K-feldspar during water-undersaturated melting of metapelites. Chem Geol 122:59–76. doi:10.1016/0009-2541(95)00046-O

    Article  Google Scholar 

  • Clarke DB, Henry AS, White MA (1998) Exploding xenoliths and the absence of “elephants’ graveyards” in granite batholiths. J Struct Geol 20:1325–1343. doi:10.1016/S0191-8141(98)00082-0

    Article  Google Scholar 

  • Coleman DS, Glazner AF (1997) The Sierra Crest magmatic event: rapid formation of juvenile crust during the late Cretaceous in California. Int Geol Rev 39:768–787

    Article  Google Scholar 

  • Coleman DS, Gray W, Glazner AF (2004) Rethinking the emplacement and evolution of zoned plutons: Geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geol Soc Am Bull 32:433–436

    Google Scholar 

  • Coleman DS, Glazner AF, Bartley JM, Law RD (2005) Incremental assembly and emplacement of Mesozoic plutons in the Sierra Nevada and White and Inyo Ranges, California, Geological Society of America Field Forum Field Trip Guide (Rethinking the assembly and evolution of plutons: Field tests and perspectives, 7–14 October 2005) p 55

  • Dumond G, Yoshinobu AS, Barnes CG (2005) Midcrustal emplacement of the Sausfjellet Pluton, central Norway; ductile flow, stoping, and in situ assimilation. Geol Soc Am Bull 117:383–395. doi:10.1130/B25464.1

    Article  Google Scholar 

  • Dungan MA (2005) Partial melting at the earth’s surface: implications for assimilation rates and mechanisms in subvolcanic intrusions. J Volcanol Geotherm Res 140:193–203. doi:10.1016/j.jvolgeores.2004.07.021

    Article  Google Scholar 

  • Glazner AF (2007) Thermal limitations on incorporation of wall rock into magma. Geology 35:319–322. doi:10.1130/G23134A.1

    Article  Google Scholar 

  • Glazner AF, Bartley JM (2006) Is stoping a volumetrically significant pluton emplacement process? Geol Soc Am Bull 118:1185–1195. doi:10.1130/B25738.1

    Article  Google Scholar 

  • Glazner AF, Bartley JM (2008) Reply to comments on “Is stoping a volumetrically significant pluton emplacement process?”. Geol Soc Am Bull 120:1082–1087. doi:10.1130/B26312.1

    Article  Google Scholar 

  • Glazner AF, Mills RD, Coleman DS (2008) Selective vs. bulk assimilation and the restricted chemical variability of igneous rocks. Goldschmidt Conference Abstracts (in press)

  • Gray W (2003) Chemical and thermal evolution of the Late Cretaceous Tuolumne Intrusive Suite, Yosemite National Park, California, PhD thesis, Chapel Hill. University of North Carolina, North Carolina, p 202

  • Gray W, Glazner AF, Coleman DS, Bartley JM (2008) Long-term geochemical variability of the Late Cretaceous Tuolumne Intrusive Suite, Central Sierra Nevada, California. Geological Society of London. Spec Publ 304:183–201

    Article  Google Scholar 

  • Gromet LP, Silver LT (1983) Rare earth element distributions among minerals in a granodiorite and their petrogenetic implications. Geochim Cosmochim Acta 47:925–939. doi:10.1016/0016-7037(83)90158-8

    Article  Google Scholar 

  • Hinchey AM, Carr SD (2006) The S-type Ladybird leucogranite suite of southeastern British Columbia: Geochemical and isotopic evidence for a genetic link with migmatite formation in the North American basement gneisses of the Monashee complex. Lithos 90:223–248. doi:10.1016/j.lithos.2006.03.003

    Article  Google Scholar 

  • Holtz F, Johannes W (1991) Genesis of peraluminous granites I. Experimental investigation of melt compositions at 3 and 5 kb and various H2O activities. J Petrol 32:935–958

    Google Scholar 

  • Huber NK, Bateman PC, Wahrhaftig C (1989) Geologic map of Yosemite National Park and vicinity, California, US Geological Survey Map I-1874, scale 1:125,000

  • Joesten R (1977) Mineralogical and chemical evolution of contaminated igneous rocks at a gabbro-limestone contact, Christmas Mountains, Big Bend region, Texas. Geol Soc Am Bull 88:1515–1529. doi:10.1130/0016-7606(1977)88<1515:MACEOC>2.0.CO;2

    Article  Google Scholar 

  • Johnson TE, Hudson NFC, Droop GTR (2003) Evidence for a genetic granite-migmatite link in the Dalradian of NE Scotland. J Geol Soc Lond 160:447–457. doi:10.1144/0016-764902-069

    Article  Google Scholar 

  • Jung S, Mezger K, Masberg P, Hoffer E, Hoernes S (1998) Petrology of an intrusion-related high-grade migmatite: implications for partial melting of metasedimentary rocks and leucosome-forming processes. J Metamorph Geol 16:425–445. doi:10.1111/j.1525-1314.1998.00146.x

    Article  Google Scholar 

  • Kistler RW, Chappell BW, Peck DL, Bateman PC (1986) Isotopic variations in the Tuolumne Intrusive Suite, central Sierra Nevada, California. Contrib Mineral Petrol 94:205–220. doi:10.1007/BF00592937

    Article  Google Scholar 

  • Knesel KM, Davidson JP (1996) Isotopic disequilibrium during melting of granite and implications for crustal contamination of magmas. Geology 24:243–246. doi:10.1130/0091-7613(1996)024<0243:IDDMOG>2.3.CO;2

    Article  Google Scholar 

  • Lahren MM, Schweickert RA, Mattinson JM, Walker JD (1990) Evidence of uppermost Proterozoic to Lower Cambrian miogeoclinal rocks and the Mojave-Snow Lake fault: Snow Lake pendant, central Sierra Nevada, California. Tectonics 9:1585–1608. doi:10.1029/TC009i006p01585

    Article  Google Scholar 

  • Le Maitre RW (2002) Igneous rocks: a classification and glossary of terms, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • McBirney AR, Taylor HP, Armstrong RL (1987) Paricutin re-examined: a classic example of crustal assimilation in calc-alkaline magma. Contrib Mineral Petrol 95:4–20. doi:10.1007/BF00518026

    Article  Google Scholar 

  • Miller JS, Glazner AF, Walker JD, Martin MW (1995) Geochronologic and isotopic evidence for Triassic-Jurassic emplacement of the eugeoclinal allochthon in the Mojave Desert region, California. Geol Soc Am Bull 107:1441–1457. doi:10.1130/0016-7606(1995)107<1441:GAIEFT>2.3.CO;2

    Article  Google Scholar 

  • Milord I, Sawyer EW, Brown M (2001) Formation of Diatexite Migmatite and Granite Magma during anatexis of semi-pelitic metasedimentary rocks: an example from St Malo, France. J Petrol 42:487–505. doi:10.1093/petrology/42.3.487

    Article  Google Scholar 

  • Montel JM, Vielzeuf D (1997) Partial melting of metagreywackes, Part II. Compositions of minerals and melts. Contrib Mineral Petrol 128:176–196. doi:10.1007/s004100050302

    Article  Google Scholar 

  • Patiño-Douce AE, Harris N (1998) Experimental constraints on Himalayan anatexis. J Petrol 39:689–710. doi:10.1093/petrology/39.4.689

    Article  Google Scholar 

  • Patiño-Douce AE, Johnston AD (1991) Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites. Contrib Mineral Petrol 107:202–218. doi:10.1007/BF00310707

    Article  Google Scholar 

  • Preston RJ, Dempster TJ, Bell BR, Rogers G (1999) The petrology of mullite-bearing peraluminous xenoliths: implications for contamination processes in basaltic magmas. J Petrol 40:549–573. doi:10.1093/petrology/40.4.549

    Article  Google Scholar 

  • Ratajeski K (1999) Field, geochemical and experimental study of mafic to felsic plutonic rocks associated with the Intrusive Suite of Yosemite Valley, California, PhD thesis, Chapel Hill. North Carolina, University of North Carolina, p 196

  • Roberts D, Nordgulen Ø, Melezhik V (2007) The Uppermost Allochthon in the Scandinavian Caledonides: from a Laurentian ancestry through Taconian orogeny to Scandian crustal growth on Baltica. In: Hatcher RD, Carlson MP, McBride JH, Martinez Catalan JR (eds) 4-D framework of continental crust. Geological Society of America Memoir, vol 200, pp 357–377

  • Rose RL (1957) Andalusite and corundum bearing pegmatities in Yosemite National Park, California. Am Mineral 42:635–647

    Google Scholar 

  • Saito S, Makoto A, Nakajima T (2007) Hybridization of a shallow ‘I-type’ granitoid pluton and its host migmatite by magma-chamber wall collapse: the Tokuwa Pluton, Central Japan. J Petrol 48:79–111. doi:10.1093/petrology/egl055

    Article  Google Scholar 

  • Sawyer EW (1987) The role of partial melting and fractional crystallization in determining discordant migmatite leucosome compositions. J Petrol 28:445–473

    Google Scholar 

  • Schweickert RA, Lahren MM (1991) Age and tectonic significance of metamorphic rocks along the axis of the Sierra Nevada batholith: a critical reappraisal. In: Cooper J, Stevens C (eds) Paleozoic paleography of the western United States-II, Society for Sedimentary Geology. Pac Sect 67:653–676

    Google Scholar 

  • Sisson TW, Ratajeski K, Hankins WB, Glazner AF (2005) Voluminous granitic magmas from common basaltic sources. Contrib Mineral Petrol 148:635–661. doi:10.1007/s00410-004-0632-9

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345

    Article  Google Scholar 

  • Symmes GH, Ferry JM (1995) Metamorphism, fluid flow and partial melting in pelitic rocks from the Onawa contact aureole, Central Maine, USA. J Petrol 36:587–612

    Google Scholar 

  • Taylor RZ (2003) Structure and stratigraphy of the May Lake interpluton screen, Yosemite National Park, California, MS thesis, Chapel Hill. University of North Carolina, North Carolina, p 55

  • Wenzel T, Baumgartner LP, Brugmann GE, Konnikov EG, Kislov EV (2002) Partial melting and assimilation of dolomitic xenoliths by mafic magma: the Ioko-Dovyren intrusion (North Baikal Region, Russia). J Petrol 43:2049–2074. doi:10.1093/petrology/43.11.2049

    Article  Google Scholar 

  • Whitney DL, Irving AJ (1994) Origin of K-poor leucosomes in a metasedimentary migmatite complex by ultrametamorphism, syn-metamorphic magmatism and subsolidus processes. Lithos 32:173–192. doi:10.1016/0024-4937(94)90038-8

    Article  Google Scholar 

  • Zeng L, Saleeby JB, Ducea M (2005a) Geochemical characteristics of crustal anatexis during the formation of migmatite at the Southern Sierra Nevada, California. Contrib Mineral Petrol 150:386–402. doi:10.1007/s00410-005-0010-2

    Article  Google Scholar 

  • Zeng L, Asimow PD, Saleeby JB (2005b) Coupling of anatectic reactions and dissolution of accessory phases and the Sr and Nd isotope systematic of anatectic melts from a metasedimentary source. Geochim Cosmochim Acta 69:3671–3682. doi:10.1016/j.gca.2005.02.035

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by grants from the National Science Foundation (EAR-9814789, EAR-0336070, and EAR-0538129) and by a student grants from the University of California’s White Mountain Research Station, and the University of North Carolina Martin and Bartlett Funds. The manuscript was greatly improved by incorporation of suggestions from reviewers James Beard, an anonymous reviewer and editor Jon Blundy. Our work greatly benefited by field time spent with numerous colleagues and students, including John Bartley, Breck Johnson, Jesse Davis, Walt Gray, John Templeton, and Sam Coleman. We gratefully acknowledge generous cooperation and logistical support from the U.S. National Park Service and U.S. Geological Survey, in particular Jan van Wagtendonk, Peggy Moore, and Greg Stock. We also want to thank Jeff Grossman for his help with the large dataset of geochemistry we used in several figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan D. Mills.

Additional information

Communicated by J. Blundy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mills, R.D., Glazner, A.F. & Coleman, D.S. Scale of pluton/wall rock interaction near May Lake, Yosemite National Park, CA, USA. Contrib Mineral Petrol 158, 263–281 (2009). https://doi.org/10.1007/s00410-009-0381-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-009-0381-x

Keywords

Navigation