Skip to main content
Log in

Cerebellar contributions to neurological soft signs in healthy young adults

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Neurological soft signs (NSS) are frequently found in psychiatric disorders of significant neurodevelopmental origin, e.g., in patients with schizophrenia and autism. Yet NSS are also present in healthy individuals suggesting a neurodevelopmental signature of motor function, probably as a continuum between health and disease. So far, little is known about the neural mechanisms underlying these motor phenomena in healthy persons, and it is even less known whether the cerebellum contributes to NSS expression. Thirty-seven healthy young adults (mean age = 23 years) were studied using high-resolution structural magnetic resonance imaging (MRI) and “resting-state” functional MRI at three Tesla. NSS levels were measured using the “Heidelberg Scale.” Cerebellar gray matter volume was investigated using cerebellum-optimized voxel-based analysis methods. Cerebellar function was assessed using regional homogeneity (ReHo), a measure of local network strength. The relationship between cerebellar structure and function and NSS was analyzed using regression models. There was no significant relationship between cerebellar volume and NSS (p < 0.005, uncorrected for height, p < 0.05 corrected for spatial extent). Positive associations with cerebellar lobule VI activity were found for the “motor coordination” and “hard signs” NSS domains. A negative relationship was found between lobule VI activity and “complex motor task” domain (p < 0.005, uncorrected for height, p < 0.05 corrected for spatial extent). The data indicate that in healthy young adults, distinct NSS domains are related to cerebellar activity, specifically with activity of cerebellar subregions with known cortical somatomotor projections. In contrast, cerebellar volume is not predictive of NSS in healthy persons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Schroder J, Niethammer R, Geider FJ, Reitz C, Binkert M, Jauss M et al (1991) Neurological soft signs in schizophrenia. Schizophr Res 6(1):25–30

    Article  CAS  PubMed  Google Scholar 

  2. Bombin I, Arango C, Buchanan RW (2005) Significance and meaning of neurological signs in schizophrenia: two decades later. Schizophr Bull 31(4):962–977

    Article  PubMed  Google Scholar 

  3. Chan RC, Gottesman II (2008) Neurological soft signs as candidate endophenotypes for schizophrenia: a shooting star or a Northern star? Neurosci Biobehav Rev 32(5):957–971

    Article  PubMed  Google Scholar 

  4. Hirjak D, Wolf RC, Stieltjes B, Hauser T, Seidl U, Schröder J, Thomann PA (2014) Cortical signature of neurological soft signs in recent onset schizophrenia. Brain Topogr 27(2):296–306. doi:10.1007/s10548-013-0292-z

    Article  PubMed  Google Scholar 

  5. Hirjak D, Wolf RC, Stieltjes B, Seidl U, Schröder J, Thomann PA (2012) Neurological soft signs and subcortical brain morphology in recent onset schizophrenia. J Psychiatr Res 46(4):533–539. doi:10.1016/j.jpsychires.2012.01.015

    Article  PubMed  Google Scholar 

  6. Mayoral M, Merchan-Naranjo J, Rapado M, Leiva M, Moreno C, Giraldez M et al (2010) Neurological soft signs in juvenile patients with Asperger syndrome, early onset psychosis, and healthy controls. Early Interv Psychiatry 4(4):283–290

    Article  PubMed  Google Scholar 

  7. De la Fuente JM, Bobes J, Vizuete C, Bascaran MT, Morlan I, Mendlewicz J (2006) Neurologic soft signs in borderline personality disorder. J Clin Psychiatry 67(4):541–546

    Article  PubMed  Google Scholar 

  8. Dazzan P, Morgan KD, Chitnis X, Suckling J, Morgan C, Fearon P et al (2006) The structural brain correlates of neurological soft signs in healthy individuals. Cereb Cortex 16(8):1225–1231

    Article  PubMed  Google Scholar 

  9. Zhao Q, Li Z, Huang J, Yan C, Dazzan P, Pantelis C, et al (2014) Neurological soft signs are not “soft” in brain structure and functional networks: evidence from ale meta-analysis. Schizophr Bull 40(3):626–641. doi:10.1093/schbul/sbt063

    Article  PubMed Central  PubMed  Google Scholar 

  10. Hirjak D, Wolf RC, Kubera KM, Stieltjes B, Thomann PA (2014) Multiparametric mapping of neurological soft signs in healthy adults. Brain Struct Funct [Epub ahead of print]

  11. Chan RC, Rao H, Chen EE, Ye B, Zhang C (2006) The neural basis of motor sequencing: an fMRI study of healthy subjects. Neurosci Lett 398(3):189–194

    Article  CAS  PubMed  Google Scholar 

  12. Schroder J, Wenz F, Schad LR, Baudendistel K, Knopp MV (1995) Sensorimotor cortex and supplementary motor area changes in schizophrenia. A study with functional magnetic resonance imaging. Br J Psychiatry 167(2):197–201

    Article  CAS  PubMed  Google Scholar 

  13. Schroder J, Essig M, Baudendistel K, Jahn T, Gerdsen I, Stockert A et al (1999) Motor dysfunction and sensorimotor cortex activation changes in schizophrenia: a study with functional magnetic resonance imaging. Neuroimage 9(1):81–87

    Article  CAS  PubMed  Google Scholar 

  14. Thomann PA, Hirjak D, Kubera KM, Stieltjes B, Wolf RC (2014) Neural network activity and neurological soft signs in healthy adults. Behav Brain Res 278C:514–519

    Google Scholar 

  15. Hirjak D, Wolf RC, Stieltjes B, Seidl U, Schroder J, Thomann PA (2012) Neurological soft signs and subcortical brain morphology in recent onset schizophrenia. J Psychiatr Res 46(4):533–539

    Article  PubMed  Google Scholar 

  16. Hirjak D, Wolf RC, Wilder-Smith EP, Kubera KM, Thomann PA (2015) Motor abnormalities and basal ganglia in schizophrenia: evidence from structural magnetic resonance imaging. Brain Topogr 28(1):135–152. doi:10.1007/s10548-014-0377-3

    Article  PubMed  Google Scholar 

  17. Thomann PA, Roebel M, Dos Santos V, Bachmann S, Essig M, Schroder J (2009) Cerebellar substructures and neurological soft signs in first-episode schizophrenia. Psychiatry Res 173(2):83–87

    Article  PubMed  Google Scholar 

  18. Hirjak D, Wolf RC, Kubera KM, Stieltjes B, Maier-Hein KH, Thomann PA (2015) Neurological soft signs in recent-onset schizophrenia: Focus on the cerebellum. Prog Neuropsychopharmacol Biol Psychiatry. doi:10.1016/j.pnpbp.2015.01.011

    PubMed  Google Scholar 

  19. Schmahmann JD, Macmore J, Vangel M (2009) Cerebellar stroke without motor deficit: clinical evidence for motor and non-motor domains within the human cerebellum. Neuroscience 162(3):852–861

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 44(2):489–501

    Article  PubMed  Google Scholar 

  21. Chan RC, Huang J, Di X (2009) Dexterous movement complexity and cerebellar activation: a meta-analysis. Brain Res Rev 59(2):316–323

    Article  PubMed  Google Scholar 

  22. Hardwick RM, Rottschy C, Miall RC, Eickhoff SB (2013) A quantitative meta-analysis and review of motor learning in the human brain. Neuroimage 67:283–297

    Article  PubMed Central  PubMed  Google Scholar 

  23. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541

    Article  CAS  PubMed  Google Scholar 

  24. Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME (2006) Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci USA 103(26):10046–10051

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102(27):9673–9678

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Bachmann S, Bottmer C, Schroder J (2005) Neurological soft signs in first-episode schizophrenia: a follow-up study. Am J Psychiatry 162(12):2337–2343

    Article  PubMed  Google Scholar 

  27. Diedrichsen J (2006) A spatially unbiased atlas template of the human cerebellum. Neuroimage 33(1):127–138

    Article  PubMed  Google Scholar 

  28. Kuhn S, Romanowski A, Schubert F, Gallinat J (2011) Reduction of cerebellar grey matter in Crus I and II in schizophrenia. Brain Struct Funct 217(2):523–529

    Article  PubMed  Google Scholar 

  29. Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26(3):839–851

    Article  PubMed  Google Scholar 

  30. Kuhn S, Romanowski A, Schilling C, Banaschewski T, Barbot A, Barker GJ et al (2012) Manual dexterity correlating with right lobule VI volume in right-handed 14-year-olds. Neuroimage 59(2):1615–1621

    Article  PubMed  Google Scholar 

  31. D’Agata F, Caroppo P, Boghi A, Coriasco M, Caglio M, Baudino B et al (2011) Linking coordinative and executive dysfunctions to atrophy in spinocerebellar ataxia 2 patients. Brain Struct Funct 216(3):275–288

    Article  PubMed  Google Scholar 

  32. Fan L, Tang Y, Sun B, Gong G, Chen ZJ, Lin X et al (2010) Sexual dimorphism and asymmetry in human cerebellum: an MRI-based morphometric study. Brain Res 1353:60–73

    Article  CAS  PubMed  Google Scholar 

  33. Zang Y, Jiang T, Lu Y, He Y, Tian L (2004) Regional homogeneity approach to fMRI data analysis. Neuroimage 22(1):394–400

    Article  PubMed  Google Scholar 

  34. Zou Q, Wu CW, Stein EA, Zang Y, Yang Y (2009) Static and dynamic characteristics of cerebral blood flow during the resting state. Neuroimage 48(3):515–524

    Article  PubMed Central  PubMed  Google Scholar 

  35. Wu T, Long X, Zang Y, Wang L, Hallett M, Li K et al (2009) Regional homogeneity changes in patients with Parkinson’s disease. Hum Brain Mapp 30(5):1502–1510

    Article  PubMed  Google Scholar 

  36. Yao Z, Wang L, Lu Q, Liu H, Teng G (2009) Regional homogeneity in depression and its relationship with separate depressive symptom clusters: a resting-state fMRI study. J Affect Disord 115(3):430–438

    Article  PubMed  Google Scholar 

  37. Paakki JJ, Rahko J, Long X, Moilanen I, Tervonen O, Nikkinen J et al (2010) Alterations in regional homogeneity of resting-state brain activity in autism spectrum disorders. Brain Res 1321:169–179

    Article  CAS  PubMed  Google Scholar 

  38. Lui S, Li T, Deng W, Jiang L, Wu Q, Tang H et al (2010) Short-term effects of antipsychotic treatment on cerebral function in drug-naive first-episode schizophrenia revealed by “resting state” functional magnetic resonance imaging. Arch Gen Psychiatry 67(8):783–792

    Article  PubMed  Google Scholar 

  39. Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N (2009) A probabilistic MR atlas of the human cerebellum. Neuroimage 46(1):39–46

    Article  PubMed  Google Scholar 

  40. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59(3):2142–2154

    Article  PubMed Central  PubMed  Google Scholar 

  41. Visintin E, De Panfilis C, Antonucci C, Capecci C, Marchesi C, Sambataro F (2014) Parsing the intrinsic networks underlying attention: a resting state study. Behav Brain Res 278C:315–322

    Google Scholar 

  42. Hirjak D, Wolf RC, Koch SC, Mehl L, Kelbel JK, Kubera KM et al (2014) Neurological abnormalities in recent-onset schizophrenia and asperger-syndrome. Front Psychiatry 5:91

    Article  PubMed Central  PubMed  Google Scholar 

  43. Thomann PA, Wustenberg T, Santos VD, Bachmann S, Essig M, Schroder J (2009) Neurological soft signs and brain morphology in first-episode schizophrenia. Psychol Med 39(3):371–379

    Article  CAS  PubMed  Google Scholar 

  44. Kong L, Bachmann S, Thomann PA, Essig M, Schroder J (2012) Neurological soft signs and gray matter changes: a longitudinal analysis in first-episode schizophrenia. Schizophr Res 134(1):27–32

    Article  PubMed  Google Scholar 

  45. Bottmer C, Bachmann S, Pantel J, Essig M, Amann M, Schad LR et al (2005) Reduced cerebellar volume and neurological soft signs in first-episode schizophrenia. Psychiatry Res 140(3):239–250

    Article  PubMed  Google Scholar 

  46. Fan LZ, Tang YC, Sun B, Gong GL, Chen ZJ, Lin XT et al (2010) Sexual dimorphism and asymmetry in human cerebellum: an MRI-based morphometric study. Brain Res 1353:60–73

    Article  CAS  PubMed  Google Scholar 

  47. Bernard JA, Seidler RD (2013) Relationships between regional cerebellar volume and sensorimotor and cognitive function in young and older adults. Cerebellum 12(5):721–737

    Article  PubMed  Google Scholar 

  48. Bernard JA, Seidler RD (2013) Cerebellar contributions to visuomotor adaptation and motor sequence learning: an ALE meta-analysis. Front Hum Neurosci 7:27

    Article  PubMed Central  PubMed  Google Scholar 

  49. Stoodley CJ, Valera EM, Schmahmann JD (2010) An fMRI study of intra-individual functional topography in the human cerebellum. Behav Neurol 23(1–2):65–79

    Article  PubMed Central  PubMed  Google Scholar 

  50. Buckner RL (2013) The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron 80(3):807–815

    Article  CAS  PubMed  Google Scholar 

  51. Krienen FM, Buckner RL (2009) Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex 19(10):2485–2497

    Article  PubMed Central  PubMed  Google Scholar 

  52. Grodd W, Hulsmann E, Lotze M, Wildgruber D, Erb M (2001) Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp 13(2):55–73

    Article  CAS  PubMed  Google Scholar 

  53. Bushara KO, Wheat JM, Khan A, Mock BJ, Turski PA, Sorenson J et al (2001) Multiple tactile maps in the human cerebellum. NeuroReport 12(11):2483–2486

    Article  CAS  PubMed  Google Scholar 

  54. Baillieux H, De Smet HJ, Paquier PF, De Deyn PP, Marien P (2008) Cerebellar neurocognition: insights into the bottom of the brain. Clin Neurol Neurosurg 110(8):763–773

    Article  PubMed  Google Scholar 

  55. Schmahmann JD (1991) An emerging concept. The cerebellar contribution to higher function. Arch Neurol 48(11):1178–1187

    Article  CAS  PubMed  Google Scholar 

  56. Schmahmann JD (1996) From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp 4(3):174–198

    Article  CAS  PubMed  Google Scholar 

  57. Wisner KM, Atluri G, Lim KO, Macdonald AW 3rd (2013) Neurometrics of intrinsic connectivity networks at rest using fMRI: retest reliability and cross-validation using a meta-level method. Neuroimage 76:236–251

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all participants for their time and interest in this study. We are grateful to Fabio Sambataro for insightful suggestions and comments on a previous version of this manuscript, as these comments led us to improve our work.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dusan Hirjak.

Additional information

Dusan Hirjak and Philipp A. Thomann have contributed equally to this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2479 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirjak, D., Thomann, P.A., Kubera, K.M. et al. Cerebellar contributions to neurological soft signs in healthy young adults. Eur Arch Psychiatry Clin Neurosci 266, 35–41 (2016). https://doi.org/10.1007/s00406-015-0582-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-015-0582-4

Keywords

Navigation