Skip to main content

Advertisement

Log in

Linking coordinative and executive dysfunctions to atrophy in spinocerebellar ataxia 2 patients

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Spinocerebellar ataxias type 2 (SCA2) is a rare genetic disorder characterised by the degeneration of the Cerebellum, its connections and many Brainstem areas. A voxel-based morphometry (VBM) analysis was performed on 12 genetically determined SCA2 patients and 31 controls, normalising the brains with two different atlases: one was created in-house with DARTEL (a diffeomorphic registration method) and the other was SUIT (an exclusive Cerebellum atlas). We administered two versions of a popular executive/planning functions test: the Tower of London, in the traditional and in a computerised version that does not require the use of hands, to correlate the regional atrophy with the tests’ performances and to discover the different associations of Cerebellum’s areas to cognitive dysfunctions. SCA2 showed a diffuse infratentorial atrophy with the whole Cerebellum and Brainstem affected, the overall patterns were highly overlapping between atlases with some minor differences. The DARTEL VBM also allowed detecting two sovratentorial clusters of atrophy, one in the left Inferior Parietal Lobule and the other in the Corticospinal Tracts. Additional analyses revealed a partial involvement of many White Matter tracts and of the Thalamus in the pathology. The classical Tower of London version correlated maximally with the right Lobule IV–V, when the computerised version correlated with the right Crus 1. The correlations of different versions of the test suggested a dissociation between the dysfunctions in SCA2: the Posterior Cerebellum was linked to the executive dysfunction while the Anterior Cerebellum was linked to the coordinative dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADCA:

Autosomal dominant cerebellar ataxia

CSF:

Cerebrospinal fluid

FWE:

Family Wyse error

FWHM:

Full width half maximum

FDR:

False discovery rate

GM:

Grey matter

ICARS:

International Cooperative Ataxia Rating Scale

MMSE:

Mini mental state examination

MNI:

Montreal Neurological Institute

MRI:

Magnetic resonance imaging

NS:

Not significant

SCA:

Spinocerebellar atrophy

SD:

Standard deviation

SE:

Standard error

TIV:

Total intracranial volume

ToL:

Tower of London

CPU:

Tower of London computerised version

PEG:

Tower of London Pegs version

VBM:

Voxel-based morphometry

WM:

White matter

References

  • Andreasen NC, Rezai K, Alliger R et al (1992) Hypofrontality in neuroleptic-naïve patients and in patients with chronic schizophrenia. Assessment with xenon 133 single-photon emission computed tomography and the Tower of London. Arch Gen Psychiatry 49:943–958

    PubMed  CAS  Google Scholar 

  • Ashburner J (2007) A fast diffeomorphic image registration algorithm. NeuroImage 38(1):95–113. doi:10.1016/j.neuroimage.2007.07.007

    Article  PubMed  Google Scholar 

  • Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. NeuroImage 11(6 Pt 1):805–821. doi:10.1006/nimg.2000.0582

    Article  PubMed  CAS  Google Scholar 

  • Ashburner J, Friston KJ (2005) Unified segmentation. NeuroImage 26(3):839–851. doi:10.1016/j.neuroimage.2005.02.018

    Article  PubMed  Google Scholar 

  • Baker SC, Rogers RD, Owen AM, Frith CD, Dolan RJ, Frackowiak RS, Robbins TW (1996) Neural systems engaged by planning: a PET study of the Tower of London task. Neuropsychologia 34:515–526

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp MH, Dagher A, Aston JAD, Doyon J (2003) Dynamic functional changes associated with cognitive skill learning of an adapted version of the Tower of London task. NeuroImage 20(3):1649–1660. doi:10.1016/j.neuroimage.2003.07.003

    Article  PubMed  CAS  Google Scholar 

  • Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I (2001) Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125(1–2):279–284

    Article  PubMed  CAS  Google Scholar 

  • Bergouignan L, Chupin M, Czechowska Y, Kinkingnéhun S, Lemogne C, Le Bastard G et al (2009) Can voxel based morphometry, manual segmentation and automated segmentation equally detect hippocampal volume differences in acute depression? NeuroImage 45(1):29–37. doi:10.1016/j.neuroimage.2008.11.006

    Article  PubMed  Google Scholar 

  • Boghi A, Rasetti R, Avidano F, Manzone C, Orsi L, D’Agata F et al (2006) The effect of gender on planning: an fMRI study using the Tower of London task. NeuroImage 33(3):999–1010. doi:10.1016/j.neuroimage.2006.07.022

    Article  PubMed  CAS  Google Scholar 

  • Brenneis C, Bösch SM, Schocke M, Wenning GK, Poewe W (2003) Atrophy pattern in SCA2 determined by voxel-based morphometry. Neuroreport 14(14):1799–1802. doi:10.1097/01.wnr.0000094105.16607.18

    Article  PubMed  Google Scholar 

  • Brett M, Anton JL, Valabregue R, Poline JB (2002) Region of interest analysis using an SPM toolbox. In: 8th international conference on functional mapping of the human brain, vol 16, no 2, abstract 497. Sendai, Japan, Neuroimage

  • Brusco A, Gellera C, Cagnoli C, Saluto A, Castucci A, Michielotto C et al (2004) Molecular genetics of hereditary spinocerebellar ataxia: mutation analysis of spinocerebellar ataxia genes and CAG/CTG repeat expansion detection in 225 Italian families. Arch Neurol 61(5):727–733. doi:10.1001/archneur.61.5.727

    Article  PubMed  Google Scholar 

  • Bürk K (2007) Cognition in hereditary ataxia. Cerebellum 6(3):280–286. doi:10.1080/14734220601115924

    Article  PubMed  Google Scholar 

  • Bürk K, Globas C, Bosch S, Graber S, Abele M, Brice A et al (1999) Cognitive deficits in spinocerebellar ataxia 2. Brain 122(Pt 4):769–777

    Article  PubMed  Google Scholar 

  • Bürk K, Globas C, Bösch S, Klockgether T, Zühlke C, Daum I et al (2003) Cognitive deficits in spinocerebellar ataxia type 1, 2, and 3. J Neurol 250(2):207–211. doi:10.1007/s00415-003-0976-5

    Article  PubMed  Google Scholar 

  • Cuingnet R, Gérardin E, Tessieras J, Auzias G, Lehéricy S, Habert MO, et al. (2010). Automatic classification of patients with Alzheimer’s disease from structural MRI: A comparison of ten methods using the ADNI database. NeuroImage. doi:10.1016/j.neuroimage.2010.06.013

  • Dagher A, Owen AM, Boecker H, Brooks DJ (1999) Mapping the network for planning: a correlational PET activation study with the Tower of London task. Brain 122:1973–1987

    Article  PubMed  Google Scholar 

  • Della Nave R, Ginestroni A, Tessa C, Cosottini M, Giannelli M, Salvatore E et al (2008a) Brain structural damage in spinocerebellar ataxia type 2. A voxel-based morphometry study. Mov Disord 23(6):899–903. doi:10.1002/mds.21982

    Article  PubMed  Google Scholar 

  • Della Nave R, Ginestroni A, Tessa C, Salvatore E, De Grandis D, Plasmati R et al (2008b) Brain white matter damage in SCA1 and SCA2. An in vivo study using voxel-based morphometry, histogram analysis of mean diffusivity and tract-based spatial statistics. NeuroImage 43(1):10–19. doi:10.1016/j.neuroimage.2008.06.036

    Article  PubMed  Google Scholar 

  • Diedrichsen J (2006) A spatially unbiased atlas template of the human cerebellum. NeuroImage 33(1):127–138. doi:10.1016/j.neuroimage.2006.05.056

    Article  PubMed  Google Scholar 

  • Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N (2009) A probabilistic MR atlas of the human cerebellum. NeuroImage 46(1):39–46. doi:10.1016/j.neuroimage.2009.01.045

    Article  PubMed  Google Scholar 

  • Dürr A (2010) Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurology 9(9):885–894

    Article  PubMed  Google Scholar 

  • Dürr A, Smadja D, Cancel G, Lezin A, Stevanin G, Mikol J, et al. (1995) Autosomal dominant cerebellar ataxia type I in Martinique (French West Indies). Clinical and neuropathological analysis of 53 patients from three unrelated SCA2 families. Brain 118 (Pt 6):1573–1581. http://www.ncbi.nlm.nih.gov/pubmed/8595486

  • Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K et al (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage 25(4):1325–1335. doi:10.1016/j.neuroimage.2004.12.034

    Article  PubMed  Google Scholar 

  • Estrada R, Galarraga J, Orozco G, Nodarse A, Auburger G (1999) Spinocerebellar ataxia 2 (SCA2): morphometric analyses in 11 autopsies. Acta Neuropathol 97(3):306–310

    Article  PubMed  CAS  Google Scholar 

  • Fincham JM, Carter CS, van Veen V, Stenger VA, Anderson JR (2002) Neural mechanisms of planning: a computational analysis using event-related fMRI. Proc Natl Acad Sci USA 99(5):3346–3351

    Article  PubMed  CAS  Google Scholar 

  • Finner H (1990) Some new inequalities for the Rnad distribution with application to the determination of optimum significance levels of Multiple Range Tests. J Am Stat Assoc 85:191–194

    Article  Google Scholar 

  • Finner H (1993) On a monotonicity problem in Step-Down Multiple Test Procedures. J Am Stat Assoc 88:920–923

    Article  Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198. doi:0022-3956(75)90026-6

    Article  PubMed  CAS  Google Scholar 

  • Giuffrida S, Saponara R, Restivo DA, Trovato Salinaro A, Tomarchio L, Pugliares P et al (1999) Supratentorial atrophy in spinocerebellar ataxia type 2: MRI study of 20 patients. J Neurol 246(5):383–388

    Article  PubMed  CAS  Google Scholar 

  • Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage 14(1 Pt 1):21–36. doi:10.1006/nimg.2001.0786

    Article  PubMed  CAS  Google Scholar 

  • Keihaninejad S, Heckemann RA, Fagiolo G, Symms, Hajnal JV, Hammers A (2010) A robust method to estimate the intracranial volume across MRI field strengths (1.5T and 3T). NeuroImage 50(4):1427–1437. doi:10.1016/j.neuroimage.2010.01.064

    Article  PubMed  Google Scholar 

  • Kiebel SJ, Poline JB, Friston KJ, Holmes AP, Worsley KJ (1999) Robust smoothness estimation in statistical parametric maps using standardized residuals from the general linear model. NeuroImage 10(6):756–766. doi:10.1006/nimg.1999.0508

    Article  PubMed  CAS  Google Scholar 

  • Klein A, Andersson J, Ardekani BA, Ashburner J, Avants B, Chiang MC et al (2009) Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage 46(3):786–802. doi:10.1016/j.neuroimage.2008.12.037

    Article  PubMed  Google Scholar 

  • Klinke I, Minnerop M, Schmitz-Hübsch T, Hendriks M, Klockgether T, Wüllner U et al (2010) Neuropsychological features of patients with spinocerebellar ataxia (SCA) Types 1, 2, 3, and 6. Cerebellum 9(3):433–442

    Article  PubMed  Google Scholar 

  • Klockgether T, Ludtke R, Kramer B, Abele M, Burk K, Schöls L et al (1998) The natural history of degenerative ataxia: a retrospective study in 466 patients. Brain 121(Pt 4):589–600

    Article  PubMed  Google Scholar 

  • Kubis N, Dürr A, Gugenheim M, Chneiweiss H, Mazzetti P, Brice A et al (1999) Polyneuropathy in autosomal dominant cerebellar ataxias: phenotype-genotype correlation. Muscle Nerve 22(6):712–717

    Article  PubMed  CAS  Google Scholar 

  • Lazeron RH, Rombouts SA, Machielsen WC, Scheltens P, Witter MP, Uylings HB, Barkhof F (2000) Visualizing brain activation during planning: the Tower of London test adapted for functional MR imaging. Am J Neuroradiol 21:1407–1414

    PubMed  CAS  Google Scholar 

  • Le Pira F, Zappala G, Saponara R, Domina E, Restivo D, Reggio E et al (2002) Cognitive findings in spinocerebellar ataxia type 2: relationship to genetic and clinical variables. J Neurol Sci 201(1–2):53–57. doi:S0022510X02001946

    Article  PubMed  Google Scholar 

  • Le Pira F, Giuffrida S, Maci T, Marturano L, Tarantello R, Zappala G et al (2007) Dissociation between motor and cognitive impairments in SCA2: evidence from a follow-up study. J Neurol 254(10):1455–1456. doi:10.1007/s00415-007-0548-1

    Article  PubMed  CAS  Google Scholar 

  • Measso G, Cavarzeran F, Zappalà G, Lebwitz BD, Crook TH, Pirozzolo FJ, Amaducci LA, Massari D, Grigoletto F (1993) The mini-mental state examination: normative study of italian random sample. Dev Neuropsychol 9(2):77–85

    Article  Google Scholar 

  • Mori S, van Zijl P (2007) Human white matter atlas. Am J Psychiatr 164(7):1005. doi:10.1176/appi.ajp.164.7.1005

    Article  PubMed  Google Scholar 

  • Morris RG, Ahmed S, Syed GM (1993) Neural correlates of planning ability: frontal lobe activation during the Tower of London test. Neuropsychologia 31:1367–1378

    Article  PubMed  CAS  Google Scholar 

  • Nardacchione A, Orsi L, Brusco A, Franco A, Grosso E, Dragone E et al (1999) Definition of the smallest pathological CAG expansion in SCA7. Clin Genet 56(3):232–234

    Article  PubMed  CAS  Google Scholar 

  • Newman SD, Carpenter PA, Varma S, Just MA (2003) Frontal and parietal participation in problem solving in the Tower of London: fMRI and computational modeling of planning and high-level perception. Neuropsychologia 41(12):1668–1682

    Article  PubMed  Google Scholar 

  • Orsi L, D’Agata F, Caroppo P, Franco A, Caglio MM, Avidano F et al (2010) Neuropsychological picture of 33 spinocerebellar ataxia cases. Journal of Clinical and Experimental Neuropsychology. 33:315–325. doi:10.1080/13803395.2010.518139

    Article  Google Scholar 

  • Pang JT, Giunti P, Chamberlain S, An SF, Vitaliani R, Scaravilli T et al (2002) Neuronal intranuclear inclusions in SCA2: a genetic, morphological and immunohistochemical study of two cases. Brain 125(Pt 3):656–663

    Article  PubMed  Google Scholar 

  • Pell GS, Briellmann RS, Chan CHP, Pardoe H, Abbott DF, Jackson GD (2008) Selection of the control group for VBM analysis: influence of covariates, matching and sample size. NeuroImage 41(4):1324–1335. doi:10.1016/j.neuroimage.2008.02.050

    Article  PubMed  Google Scholar 

  • Pereira JMS, Xiong L, Acosta-Cabronero J, Pengas G, Williams GB, Nestor PJ (2010) Registration accuracy for VBM studies varies according to region and degenerative disease grouping. NeuroImage 49(3):2205–2215. doi:10.1016/j.neuroimage.2009.10.068

    Article  PubMed  CAS  Google Scholar 

  • Plumet J, Gil R, Gaonac’h D (2005) Neuropsychological assessment of executive functions in women: effects of age and education. Neuropsychology 19(5):566–577. doi:10.1037/0894-4105.19.5.566

    Article  PubMed  Google Scholar 

  • Rasser PE, Johnston P, Lagopoulos J, Ward PB, Schall U, Thienel R et al (2005) Functional MRI BOLD response to Tower of London performance of first-episode schizophrenia patients using cortical pattern matching. NeuroImage 26:941–951

    Article  PubMed  Google Scholar 

  • Rüb U, Del Turco D, Del Tredici K, de Vos RAI, Brunt ER, Reifenberger G et al (2003a) Thalamic involvement in a spinocerebellar ataxia type 2 (SCA2) and a spinocerebellar ataxia type 3 (SCA3) patient, and its clinical relevance. Brain 126(Pt 10):2257–2272. doi:10.1093/brain/awg234

    Article  PubMed  Google Scholar 

  • Rüb U, Schultz C, Del Tredici K, Gierga K, Reifenberger G, de Vos RAI et al (2003b) Anatomically based guidelines for systematic investigation of the central somatosensory system and their application to a spinocerebellar ataxia type 2 (SCA2) patient. Neuropathol Appl Neurobiol 29(5):418–433

    Article  PubMed  Google Scholar 

  • Rüb U, Del Turco D, Bürk K, Diaz GO, Auburger G, Mittelbronn M et al (2005) Extended pathoanatomical studies point to a consistent affection of the thalamus in spinocerebellar ataxia type 2. Neuropathol Appl Neurobiol 31(2):127–140. doi:10.1111/j.1365-2990.2004.00617.x

    Article  PubMed  Google Scholar 

  • Rüb U, Seidel K, Ozerden I, Gierga K, Brunt ER, Schöls L et al (2007) Consistent affection of the central somatosensory system in spinocerebellar ataxia type 2 and type 3 and its significance for clinical symptoms and rehabilitative therapy. Brain research reviews 53(2):235–249. doi:10.1016/j.brainresrev.2006.08.003

    Article  PubMed  Google Scholar 

  • Rumiati RI, Papeo L, Corradi-Dell’Acqua C (2010) Higher-level motor processes. Ann N Y Acad Sci 1191(1):219–241. doi:10.1111/j.1749-6632.2010.05442.x

    Article  PubMed  Google Scholar 

  • Schall U, Johnston P, Lagopoulos J, Jüptner M, Jentzen W, Thienel R et al (2003) Functional brain maps of Tower of London performance: a positron emission tomography and functional magnetic resonance imaging study. NeuroImage 20(2):1154–1161. doi:10.1016/S1053-8119(03)00338-0

    Article  PubMed  Google Scholar 

  • Schmahmann JD (2010) The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev 20(3):236–260. doi:10.1007/s11065-010-9142-x

    Article  PubMed  Google Scholar 

  • Schmahmann JD, Doyon J, McDonald D, Holmes C, Lavoie K, Hurwitz AS et al (1999) Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. NeuroImage 10(3 Pt 1):233–260. doi:10.1006/nimg.1999.0459

    Article  PubMed  CAS  Google Scholar 

  • Schmitz-Hübsch T, Tezenas du Montcel S, Baliko L, Boesch S, Bonato S, Fancellu R et al (2006) Reliability and validity of the International Cooperative Ataxia Rating Scale: a study in 156 spinocerebellar ataxia patients. Mov Disord 21(5):699–704. doi:10.1002/mds.20781

    Article  PubMed  Google Scholar 

  • Schöls L, Bauer P, Schmidt T, Schulte T, Riess O (2004) Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol 3(5):291–304. doi:10.1016/S1474-4422(04)00737-9

    Article  PubMed  Google Scholar 

  • Shallice T (1982) Specific impairments of planning. Philos Trans R Soc Lond B Biol Sci 298(1089):199–209

    Article  PubMed  CAS  Google Scholar 

  • Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 31(4):1487–1505. doi:10.1016/j.neuroimage.2006.02.024

    Article  PubMed  Google Scholar 

  • Soong BW, Paulson HL (2007) Spinocerebellar ataxias: an update. Curr Opin Neurol 20(4):438–446. doi:10.1097/WCO.0b013e3281fbd3dd

    Article  PubMed  CAS  Google Scholar 

  • Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage 44(2):489–501. doi:10.1016/j.neuroimage.2008.08.039

    Article  PubMed  Google Scholar 

  • Stoodley CJ, Schmahmann JD (2010) Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 46(7):831–844. doi:10.1016/j.cortex.2009.11.008

    Article  PubMed  Google Scholar 

  • Stoodley CJ, Valera EM, Schmahmann JD (2010) An fMRI study of intra-individual functional topography in the human cerebellum. Behav Neurol 23(1–2):65–79. doi:10.3233/BEN-2010-0268

    PubMed  Google Scholar 

  • Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K et al (1997) International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci 145(2):205–211. doi:S0022510X96002316

    Article  PubMed  CAS  Google Scholar 

  • Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15(1):273–289. doi:10.1006/nimg.2001.0978

    Article  PubMed  CAS  Google Scholar 

  • Van den Heuvel OA, Groenewegen HJ, Barkhof F, Lazeron RHC, van Dyck R, Veltman DJ (2003) Frontostriatal system in planning complexity: a parametric functional magnetic resonance version of Tower of London task. NeuroImage 18:367–374

    Article  PubMed  Google Scholar 

  • Ying SH, Choi SI, Perlman SL, Baloh RW, Zee DS, Toga AW (2006) Pontine and cerebellar atrophy correlate with clinical disability in SCA2. Neurology 66(3):424–426. doi:10.1212/01.wnl.0000196464.47508.00

    Article  PubMed  CAS  Google Scholar 

  • Zung WW (1965) A Self-Rating Depression Scale. Arch Gen Psychiatry 12:63–70

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Compagnia di San Paolo, “Cervelletto e cognitività” 05-06. We wish to thank Dr. Cristina Manzone, Dr. Federica Avidano, Dr. Chiara Caroppo, Dr. Steve Valeri for their contribution to this paper, all the subjects who participated to the study and their families.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico D’Agata.

Additional information

F. D’Agata and P. Caroppo contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3823 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Agata, F., Caroppo, P., Boghi, A. et al. Linking coordinative and executive dysfunctions to atrophy in spinocerebellar ataxia 2 patients. Brain Struct Funct 216, 275–288 (2011). https://doi.org/10.1007/s00429-011-0310-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-011-0310-4

Keywords

Navigation