Skip to main content
Log in

Development and validation of a novel metabolic signature for predicting prognosis in patients with laryngeal cancer

  • Laryngology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

A Letter to the Editor to this article was published on 17 February 2021

Abstract

Purpose

Despite advances in the development of treatments for laryngeal cancer (LC), including surgical treatments and radio-chemotherapy, the survival rate of LC remains low. Therefore, novel metabolic signatures are urgently needed to evaluate the prognosis of LC patients.

Methods

Differentially expressed metabolic genes were extracted via bioinformatics analysis from the raw data of The Cancer Genome Atlas and Gene Expression Omnibus (GEO) databases. Univariate Cox regression and LASSO analyses were performed to identify metabolic genes that were significantly correlated with overall survival (OS). Using the Kaplan–Meier analysis and receiver operating characteristics, the prognostic power of candidate signatures was evaluated in the two databases. Gene Set Enrichment Analysis (GSEA) was performed to explore significant signaling pathways and underlying mechanisms in the high- and low-risk groups.

Results

Thirteen metabolism genes showed superior ability to predict OS for LC when compared to clinical variables, and patients in the high-risk group showed significantly poorer OS than those in the low-risk group. The area under the curve of receiver operating curves for 5- and 3-year OS was 0.929 and 0.899, respectively, which were better than the OS obtained with clinicopathological variables. Similar results obtained in the GEO cohort indicated that this gene signature could differentiate between LC patients with and without recurrence.

Conclusion

To our knowledge, this study is the first to report that the 13 metabolic genes could serve as an independent biomarker for LC, which could provide vital prognostic information and prediction for personalized treatment of LC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30. https://doi.org/10.3322/caac.21332

    Article  PubMed  Google Scholar 

  2. Hoffman HT, Porter K, Karnell LH, Cooper JS, Weber RS, Langer CJ, Ang KK, Gay G, Stewart A, Robinson RA (2006) Laryngeal cancer in the United States: changes in demographics, patterns of care, and survival. Laryngoscope 116(9):1–13. https://doi.org/10.1097/01.mlg.0000236095.97947.26

    Article  PubMed  Google Scholar 

  3. Hernandez BY, Goodman MT, Lynch CF, Cozen W, Unger ER, Steinau M, Thompson T, Saber MS, Altekruse SF, Lyu C, Saraiya M (2014) Human papillomavirus prevalence in invasive laryngeal cancer in the United States. PLoS ONE 9(12):e115931. https://doi.org/10.1371/journal.pone.0115931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Obid R, Redlich M, Tomeh C (2019) The treatment of laryngeal cancer. Oral Maxillofac Surg Clin N Am 31(1):1–11. https://doi.org/10.1016/j.coms.2018.09.001

    Article  Google Scholar 

  5. Mourad M, Dezube A, Moshier E, Shin E (2016) Geographic trends in management of early-stage laryngeal cancer. Laryngoscope 126(4):880–884. https://doi.org/10.1002/lary.25768

    Article  PubMed  Google Scholar 

  6. Lin CC, Fedewa SA, Prickett KK, Higgins KA, Chen AY (2016) Comparative effectiveness of surgical and nonsurgical therapy for advanced laryngeal cancer. Cancer 122(18):2845–2856. https://doi.org/10.1002/cncr.30122

    Article  PubMed  Google Scholar 

  7. Megwalu UC, Sikora AG (2014) Survival outcomes in advanced laryngeal cancer. JAMA Otolaryngol Head Neck Surg 140(9):855–860. https://doi.org/10.1001/jamaoto.2014.1671

    Article  PubMed  Google Scholar 

  8. Kostrzewska-Poczekaj M, Byzia E, Soloch N, Jarmuz-Szymczak M, Janiszewska J, Kowal E, Paczkowska J, Kiwerska K, Wierzbicka M, Bartochowska A, Ustaszewski A, Greczka G, Grenman R, Szyfter K, Giefing M (2019) DIAPH2 alterations increase cellular motility and may contribute to the metastatic potential of laryngeal squamous cell carcinoma. Carcinogenesis 40(10):1251–1259. https://doi.org/10.1093/carcin/bgz035

    Article  CAS  PubMed  Google Scholar 

  9. Zhang G, Fan E, Zhong Q, Feng G, Shuai Y, Wu M, Chen Q, Gou X (2019) Identification and potential mechanisms of a 4-lncRNA signature that predicts prognosis in patients with laryngeal cancer. Hum Genom 13(1):36. https://doi.org/10.1186/s40246-019-0230-6

    Article  CAS  Google Scholar 

  10. Ricciardiello F, Capasso R, Kawasaki H, Abate T, Oliva F, Lombardi A, Misso G, Ingrosso D, Leone CA, Iengo M, Caraglia M (2017) A miRNA signature suggestive of nodal metastases from laryngeal carcinoma. Acta Otorhinolaryngol Ital 37(6):467–474. https://doi.org/10.14639/0392-100x-851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tang Z, Wei G, Zhang L, Xu Z (2019) Signature microRNAs and long noncoding RNAs in laryngeal cancer recurrence identified using a competing endogenous RNA network. Mol Med Rep 19(6):4806–4818. https://doi.org/10.3892/mmr.2019.10143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sabari BR, Zhang D, Allis CD, Zhao Y (2017) Metabolic regulation of gene expression through histone acylations. Nat Rev Mol Cell Biol 18(2):90–101. https://doi.org/10.1038/nrm.2016.140

    Article  CAS  PubMed  Google Scholar 

  13. Wu F, Zhao Z, Chai RC, Liu YQ, Li GZ, Jiang HY, Jiang T (2019) Prognostic power of a lipid metabolism gene panel for diffuse gliomas. J Cell Mol Med 23(11):7741–7748. https://doi.org/10.1111/jcmm.14647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cui K, Liu C, Li X, Zhang Q, Li Y (2020) Comprehensive characterization of the rRNA metabolism-related genes in human cancer. Oncogene 39(4):786–800. https://doi.org/10.1038/s41388-019-1026-9

    Article  CAS  PubMed  Google Scholar 

  15. Gökmen-Polar Y, Neelamraju Y, Goswami CP, Gu Y, Gu X, Nallamothu G, Vieth E, Janga SC, Ryan M, Badve SS (2019) Splicing factor ESRP1 controls ER-positive breast cancer by altering metabolic pathways. EMBO Rep. https://doi.org/10.15252/embr.201846078

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hu Q, Peng J, Chen X, Li H, Song M, Cheng B, Wu T (2019) Obesity and genes related to lipid metabolism predict poor survival in oral squamous cell carcinoma. Oral Oncol 89:14–22. https://doi.org/10.1016/j.oraloncology.2018.12.006

    Article  CAS  PubMed  Google Scholar 

  17. Ma B, Jiang H, Wen D, Hu J, Han L, Liu W, Xu W, Shi X, Wei W, Liao T, Wang Y, Lu Z, Wang Y, Ji Q (2019) Transcriptome analyses identify a metabolic gene signature indicative of dedifferentiation of papillary thyroid cancer. J Clin Endocrinol Metab 104(9):3713–3725. https://doi.org/10.1210/jc.2018-02686

    Article  PubMed  Google Scholar 

  18. Liang JQ, Teoh N, Xu L, Pok S, Li X, Chu ESH, Chiu J, Dong L, Arfianti E, Haigh WG, Yeh MM, Ioannou GN, Sung JJY, Farrell G, Yu J (2018) Dietary cholesterol promotes steatohepatitis related hepatocellular carcinoma through dysregulated metabolism and calcium signaling. Nat Commun 9(1):4490. https://doi.org/10.1038/s41467-018-06931-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jin GZ, Zhang Y, Cong WM, Wu X, Wang X, Wu S, Wang S, Zhou W, Yuan S, Gao H, Yu G, Yang W (2018) Phosphoglucomutase 1 inhibits hepatocellular carcinoma progression by regulating glucose trafficking. PLoS Biol 16(10):e2006483. https://doi.org/10.1371/journal.pbio.2006483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Smith JD, Birkeland AC, Rosko AJ, Hoesli RC, Foltin SK, Swiecicki P, Mierzwa M, Chinn SB, Shuman AG, Malloy KM, Casper KA, McLean SA, Wolf GT, Bradford CR, Prince ME, Brenner JC, Spector ME (2019) Mutational profiles of persistent/recurrent laryngeal squamous cell carcinoma. Head Neck 41(2):423–428. https://doi.org/10.1002/hed.25444

    Article  PubMed  Google Scholar 

  21. Huang SP, Chan YC, Huang SY, Lin YF (2019) Overexpression of PSAT1 gene is a favorable prognostic marker in lower-grade gliomas and predicts a favorable outcome in patients with IDH1 mutations and chromosome 1p19q codeletion. Cancers (Basel). https://doi.org/10.3390/cancers12010013

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sato K, Masuda T, Hu Q, Tobo T, Kidogami S, Ogawa Y, Saito T, Nambara S, Komatsu H, Hirata H, Sakimura S, Uchi R, Hayashi N, Iguchi T, Eguchi H, Ito S, Nakagawa T, Mimori K (2017) Phosphoserine phosphatase is a novel prognostic biomarker on chromosome 7 in colorectal cancer. Anticancer Res 37(5):2365–2371. https://doi.org/10.21873/anticanres.11574

    Article  CAS  PubMed  Google Scholar 

  23. Gong S, Xu M, Zhang Y, Shan Y, Zhang H (2020) The prognostic signature and potential target genes of six long non-coding RNA in laryngeal squamous cell carcinoma. Front Genet 11:413. https://doi.org/10.3389/fgene.2020.00413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu MS, Zhao H, Xu CX, Xie PB, Wang W, Yang YY, Lee WH, Jin Y, Zhou HQ (2020) Clinical significance of EPHX2 deregulation in prostate cancer. Asian J Androl. https://doi.org/10.4103/aja.aja_34_20

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang Z, Shi Q, Sturgis EM, Spitz MR, Wei Q (2005) Polymorphisms and haplotypes of serine hydroxymethyltransferase and risk of squamous cell carcinoma of the head and neck: a case-control analysis. Pharmacogenet Genom 15(8):557–564. https://doi.org/10.1097/01.fpc.0000170915.19522.b2

    Article  Google Scholar 

  26. Liu S, Zhao Y, Xu Y, Sang M, Zhao R, Gu L, Shan B (2020) The clinical significance of methylation of MAGE-A1 and-A3 promoters and expression of DNA methyltransferase in patients with laryngeal squamous cell carcinoma. Am J Otolaryngol 41(1):102318. https://doi.org/10.1016/j.amjoto.2019.102318

    Article  CAS  PubMed  Google Scholar 

  27. Chien MH, Yang JS, Chu YH, Lin CH, Wei LH, Yang SF, Lin CW (2012) Impacts of CA9 gene polymorphisms and environmental factors on oral-cancer susceptibility and clinicopathologic characteristics in Taiwan. PLoS ONE 7(12):e51051. https://doi.org/10.1371/journal.pone.0051051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rosner G, Gluck N, Carmi S, Bercovich D, Fliss-Issakov N, Ben-Yehoyada M, Aharon-Caspi S, Kellerman E, Strul H, Shibolet O, Kariv R (2018) POLD1 and POLE gene mutations in jewish cohorts of early-onset colorectal cancer and of multiple colorectal adenomas. Dis Colon Rectum 61(9):1073–1079. https://doi.org/10.1097/dcr.0000000000001150

    Article  PubMed  Google Scholar 

  29. Zhang L, Yang W, Zhu X, Wei C (2016) p53 inhibits the expression of p125 and the methylation of POLD1 gene promoter by downregulating the Sp1-induced DNMT1 activities in breast cancer. Onco Targets Ther 9:1351–1360. https://doi.org/10.2147/ott.S98713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Weiss A, Chavez-MacGregor M, Lichtensztajn DY, Yi M, Tadros A, Hortobagyi GN, Giordano SH, Hunt KK, Mittendorf EA (2018) Validation Study of the American Joint Committee on Cancer eighth edition prognostic stage compared with the anatomic stage in breast cancer. JAMA Oncol 4(2):203–209. https://doi.org/10.1001/jamaoncol.2017.4298

    Article  PubMed  Google Scholar 

  31. Auclin E, Zaanan A, Vernerey D, Douard R, Gallois C, Laurent-Puig P, Bonnetain F, Taieb J (2017) Subgroups and prognostication in stage III colon cancer: future perspectives for adjuvant therapy. Ann Oncol 28(5):958–968. https://doi.org/10.1093/annonc/mdx030

    Article  CAS  PubMed  Google Scholar 

  32. Succo G, Crosetti E, Bertolin A, Piazza C, Molteni G, Cirillo S, Petracchini M, Tascone M, Sprio AE, Berta GN, Peretti G, Presutti L, Rizzotto G (2018) Treatment for T3 to T4a laryngeal cancer by open partial horizontal laryngectomies: prognostic impact of different pathologic tumor subcategories. Head Neck 40(9):1897–1908. https://doi.org/10.1002/hed.25176

    Article  PubMed  Google Scholar 

  33. Pan Y, Hong Y, Liang Z, Zhuang W (2019) Survival analysis of distant metastasis of laryngeal carcinoma: analysis based on SEER database. Eur Arch Otorhinolaryngol 276(1):193–201. https://doi.org/10.1007/s00405-018-5244-5

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the efforts of the National Cancer Institute in the creation of the TCGA and GEO databases.

Funding

No financial assistance was required for this study.

Author information

Authors and Affiliations

Authors

Contributions

WFL and ZQW conceived and designed the study; HF and NB collected the data. MF and KZ analyzed the data. WFL and MF contributed to the writing of the manuscript.

Corresponding author

Correspondence to Zhanqiu Wang.

Ethics declarations

Conflict of interest

All authors indicated no potential conflicts of interest.

Data availability statement

The data used to support the findings of this study are included within the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Fu, M., Zhao, K. et al. Development and validation of a novel metabolic signature for predicting prognosis in patients with laryngeal cancer. Eur Arch Otorhinolaryngol 278, 1129–1138 (2021). https://doi.org/10.1007/s00405-020-06444-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-020-06444-3

Keywords

Navigation