Skip to main content
Log in

Current role of intraoperative sensing technology in total knee arthroplasty

  • Knee Arthroplasty
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Purpose

Sensors have been introduced within the last 10 years to quantify soft tissue balancing during total knee arthroplasty (TKA) and to give the surgeon objective data. These devices are fairly new and their impact on patient outcome remains uncertain. The aim of this systematic review was to summarize all the relevant surgical and clinical results of sensors for TKA.

Methods

A PRISMA systematic review was conducted using five databases (PubMed, EMBASE, MEDLINE, GOOGLE SCHOLAR, and the COCHRANE LIBRARY) to identify all available literature that described the surgical and clinical results of sensors for TKA between 2000 and 2021. The main investigated outcome criteria were intraoperative data, postoperative functional and clinical outcome, knee range of motion, complications and revision rates.

Results

Twenty-seven articles were finally included. The maximum reported follow-up was 26 months. A balanced knee with sensor corresponded to a mediolateral difference inferior to 15 lb and a stable posterior drawer test. The standard assessment of knee balance was a poor predictor of the true soft tissue balance when compared to sensor data. At least 60% of TKA needed an additional rebalancing procedure with the sensor, after conventional gap balancing. Achieving a quantitatively balanced knee resulted in a significantly higher patient satisfaction score. But the prospective comparative studies found no demonstrable improvement in clinical outcome, range of motion or complication rate at one year postoperatively for patients undergoing TKA using sensor-guided balancing compared with routine techniques.

Conclusion

Even though the use of the intraoperative sensing technology was not related to an improvement in clinical outcome, the current studies showed that using sensors facilitates the reproduction of natural joint stability, and improves the rate of achieving a balanced knee. Sensor use in complex cases could be particularly valuable, but their use in standard practice remains to be defined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bonnin MP, Basiglini L, Archbold HA (2011) What are the factors of residual pain after uncomplicated TKA? Knee Surg Sports Traumatol Arthrosc 19(9):1411–1417. https://doi.org/10.1007/s00167-011-1549-2

    Article  PubMed  Google Scholar 

  2. Nagai K, Muratsu H, Takeoka Y, Tsubosaka M, Kuroda R, Matsumoto T (2017) The influence of joint distraction force on the soft-tissue balance using modified gap-balancing technique in posterior-stabilized total knee arthroplasty. J Arthroplasty 32(10):2995–2999. https://doi.org/10.1016/j.arth.2017.04.058

    Article  PubMed  Google Scholar 

  3. Lee SY, Lim HC, Jang KM, Bae JH (2017) What factors are associated with femoral component internal rotation in TKA using the gap balancing technique? Clin Orthop Relat Res 475(8):1999–2010. https://doi.org/10.1007/s11999-017-5319-4

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ferreira MC, Franciozi CES, Kubota MS, Priore RD, Ingham SJM, Abdalla RJ (2017) Is the use of spreaders an accurate method for ligament balancing? J Arthroplasty 32(7):2262–2267. https://doi.org/10.1016/j.arth.2017.01.055

    Article  PubMed  Google Scholar 

  5. Kim SH, Lim JW, Jung HJ, Lee HJ (2017) Influence of soft tissue balancing and distal femoral resection on flexion contracture in navigated total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 25(11):3501–3507. https://doi.org/10.1007/s00167-016-4269-9

    Article  PubMed  Google Scholar 

  6. Heesterbeek PJC, Haffner N, Wymenga AB, Stifter J, Ritschl P (2017) Patient-related factors influence stiffness of the soft tissue complex during intraoperative gap balancing in cruciate-retaining total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 25(9):2760–2768. https://doi.org/10.1007/s00167-015-3694-5

    Article  CAS  PubMed  Google Scholar 

  7. Wyss TF, Schuster AJ, Munger P, Pfluger D, Wehrli U (2006) Does total knee joint replacement with the soft tissue balancing surgical technique maintain the natural joint line? Arch Orthop Trauma Surg 126(7):480–486. https://doi.org/10.1007/s00402-006-0171-0

    Article  CAS  PubMed  Google Scholar 

  8. Mihalko WM, Saleh KJ, Krackow KA, Whiteside LA (2009) Soft-tissue balancing during total knee arthroplasty in the varus knee. J Am Acad Orthop Surg 17(12):766–774. https://doi.org/10.5435/00124635-200912000-00005

    Article  PubMed  Google Scholar 

  9. Fehring TK, Odum S, Griffin WL, Mason JB, Nadaud M (2001) Early failures in total knee arthroplasty. Clin Orthop Relat Res 392:315–318. https://doi.org/10.1097/00003086-200111000-00041

    Article  Google Scholar 

  10. Sharkey PF, Hozack WJ, Rothman RH, Shastri S, Jacoby SM (2002) Insall award paper. Why are total knee arthroplasties failing today? Clin Orthop Relat Res 404:7–13. https://doi.org/10.1097/00003086-200211000-00003

    Article  Google Scholar 

  11. Kuster MS, Stachowiak GW (2002) Factors affecting polyethylene wear in total knee arthroplasty. Orthopedics 25:235–242

    Article  Google Scholar 

  12. Wasielewski RC, Galat DD, Komistek RD (2005) Correlation of compartment pressure data from an intraoperative sensing device with postoperative fluoroscopic kinematic results in TKA patients. J Biomech 38(2):333–339. https://doi.org/10.1016/j.jbiomech.2004.02.040

    Article  PubMed  Google Scholar 

  13. Anastasiadis A, Magnissalis E, Tsakonas A (2010) A novel intraoperative sensor for soft tissue balancing in total knee arthroplasty. J Med Eng Technol 34(7–8):448–454. https://doi.org/10.3109/03091902.2010.517898

    Article  CAS  PubMed  Google Scholar 

  14. Gustke KA, Golladay GJ, Roche MW, Elson LC, Anderson CR (2014) A new method for defining balance: promising short-term clinical outcomes of sensor-guided TKA. J Arthroplasty 29(5):955–960. https://doi.org/10.1016/j.arth.2013.10.020

    Article  PubMed  Google Scholar 

  15. Meere PA, Schneider SM, Walker PS (2016) Accuracy of balancing at total knee surgery using an instrumented tibial trial. J Arthroplasty 31(9):1938–1942. https://doi.org/10.1016/j.arth.2016.02.050

    Article  PubMed  Google Scholar 

  16. Gustke KA, Golladay GJ, Roche MW, Elson LC, Anderson CR (2017) A targeted approach to ligament balancing using kinetic sensors. J Arthroplasty 32(7):2127–2132. https://doi.org/10.1016/j.arth.2017.02.021

    Article  PubMed  Google Scholar 

  17. Risitano S, Karamian B, Indelli PF (2017) Intraoperative load-sensing drives the level of constraint in primary total knee arthroplasty: surgical technique and review of the literature. J Clin Orthop Trauma 8(3):265–269. https://doi.org/10.1016/j.jcot.2017.06.004

    Article  PubMed  PubMed Central  Google Scholar 

  18. Song SJ, Lee HW, Kim KI, Park CH (2020) Load imbalances existed as determined by a sensor after conventional gap balancing with a tensiometer in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 28(9):2953–2961. https://doi.org/10.1007/s00167-019-05699-6

    Article  PubMed  Google Scholar 

  19. MacDessi SJ, Gharaibeh MA, Harris IA (2019) How accurately can soft tissue balance be determined in total knee arthroplasty? J Arthroplasty 34(2):290–294. https://doi.org/10.1016/j.arth.2018.10.003

    Article  PubMed  Google Scholar 

  20. MacDessi SJ, Wood JA, Diwan AD, Harris IA, Group SBS (2021) Surgeon-defined assessment is a poor predictor of knee balance in total knee arthroplasty: a prospective, multicenter study. Knee Surg Sports Traumatol Arthrosc 29(2):498–506. https://doi.org/10.1007/s00167-020-05925-6

    Article  PubMed  Google Scholar 

  21. Cho KJ, Seon JK, Jang WY, Park CG, Song EK (2018) Objective quantification of ligament balancing using VERASENSE in measured resection and modified gap balance total knee arthroplasty. BMC Musculoskelet Disord 19(1):266. https://doi.org/10.1186/s12891-018-2190-8

    Article  PubMed  PubMed Central  Google Scholar 

  22. Elmallah RK, Mistry JB, Cherian JJ, Chughtai M, Bhave A, Roche MW et al (2016) Can we really “feel” a balanced total knee arthroplasty? J Arthroplasty 31(9 Suppl):102–105. https://doi.org/10.1016/j.arth.2016.03.054

    Article  PubMed  Google Scholar 

  23. Nodzo SR, Franceschini V, Gonzalez Della Valle A (2017) Intraoperative load-sensing variability during cemented, posterior-stabilized total knee arthroplasty. J Arthroplasty 32(1):66–70. https://doi.org/10.1016/j.arth.2016.06.029

    Article  PubMed  Google Scholar 

  24. Gordon AC, Conditt MA, Verstraete MA (2021) Achieving a balanced knee in robotic TKA. Sensors 21(2):535. https://doi.org/10.3390/s21020535

    Article  PubMed Central  Google Scholar 

  25. Lakra A, Sarpong NO, Jennings EL, Grosso MJ, Cooper HJ, Shah RP et al (2019) The learning curve by operative time for soft tissue balancing in total knee arthroplasty using electronic sensor technology. J Arthroplasty 34(3):483–487. https://doi.org/10.1016/j.arth.2018.11.014

    Article  PubMed  Google Scholar 

  26. Cochetti A, Ghirardelli S, Iannotti F, Giardini P, Risitano S, Indelli PF (2020) Sensor-guided technology helps to reproduce medial pivot kinematics in total knee arthroplasty. J Orthop Surg (Hong Kong) 28(3):2309499020966133. https://doi.org/10.1177/2309499020966133

    Article  Google Scholar 

  27. Chow JC, Breslauer L (2017) The use of intraoperative sensors significantly increases the patient-reported rate of improvement in primary total knee arthroplasty. Orthopedics 40(4):e648–e651. https://doi.org/10.3928/01477447-20170503-01

    Article  PubMed  Google Scholar 

  28. Gustke KA, Golladay GJ, Roche MW, Jerry GJ, Elson LC, Anderson CR (2014) Increased satisfaction after total knee replacement using sensor-guided technology. Bone Joint J 96-B(10):1333–1338. https://doi.org/10.1302/0301-620X.96B10.34068

    Article  CAS  PubMed  Google Scholar 

  29. Golladay GJ, Bradbury TL, Gordon AC, Fernandez-Madrid IJ, Krebs VE, Patel PD et al (2019) Are patients more satisfied with a balanced total knee arthroplasty? J Arthroplasty 34(7S):S195–S200. https://doi.org/10.1016/j.arth.2019.03.036

    Article  PubMed  Google Scholar 

  30. Livermore AT, Erickson JA, Blackburn B, Peters CL (2020) Does the sequential addition of accelerometer-based navigation and sensor-guided ligament balancing improve outcomes in TKA? Bone Joint J 102:24–30. https://doi.org/10.1302/0301-620X.102B6.BJJ-2019-1634.R1

    Article  PubMed  Google Scholar 

  31. Kreuzer SW, Pourmoghaddam A, Leffers KJ, Johnson CW, Dettmer M (2016) Computed tomography analysis of postsurgery femoral component rotation based on a force sensing device method versus hypothetical rotational alignment based on anatomical landmark methods: a pilot study. Adv Orthop 18:4–6. https://doi.org/10.1155/2016/4961846

    Article  Google Scholar 

  32. Camarata DA (2014) Soft tissue balance in total knee arthroplasty with a force sensor. Orthop Clin North Am 45(2):175–184. https://doi.org/10.1016/j.ocl.2013.12.001

    Article  PubMed  Google Scholar 

  33. Wasielewski RC, Galat DD, Komistek RD (2004) An intraoperative pressure-measuring device used in total knee arthroplasties and its kinematics correlations. Clin Orthop Relat Res 427:171–178. https://doi.org/10.1097/01.blo.0000145555.34318.46

    Article  Google Scholar 

  34. Geller JA, Lakra A, Murtaugh T (2017) The use of electronic sensor device to augment ligament balancing leads to a lower rate of arthrofibrosis after total knee arthroplasty. J Arthroplasty 32(5):1502–1504. https://doi.org/10.1016/j.arth.2016.12.019

    Article  PubMed  Google Scholar 

  35. Wilson CJ, Theodoulou A, Damarell RA, Krishnan J (2017) Knee instability as the primary cause of failure following total knee arthroplasty (TKA): a systematic review on the patient, surgical and implant characteristics of revised TKA patients. Knee 24(6):1271–1281. https://doi.org/10.1016/j.knee.2017.08.060

    Article  PubMed  Google Scholar 

  36. Aunan E, Kibsgard T, Clarke-Jenssen J, Rohrl SM (2012) A new method to measure ligament balancing in total knee arthroplasty: laxity measurements in 100 knees. Arch Orthop Trauma Surg 132(8):1173–1181. https://doi.org/10.1007/s00402-012-1536-1

    Article  PubMed  PubMed Central  Google Scholar 

  37. Crottet D, Kowal J, Sarfert SA, Maeder T, Bleuler H, Nolte LP et al (2007) Ligament balancing in TKA: evaluation of a force-sensing device and the influence of patellar eversion and ligament release. J Biomech 40(8):1709–1715. https://doi.org/10.1016/j.jbiomech.2006.08.004

    Article  PubMed  Google Scholar 

  38. Cidambi KR, Robertson N, Borges C, Nassif NA, Barnett SL (2018) Intraoperative comparison of measured resection and gap balancing using a force sensor: a prospective randomized controlled trial. J Arthroplasty 33(7S):S126–S130. https://doi.org/10.1016/j.arth.2018.02.044

    Article  PubMed  Google Scholar 

  39. Sculco P, Gruskay J, Nodzo S, Carrol K, Shanaghan K, Haas S et al (2018) The role of the tourniquet and patella position on the compartmental loads during sensor-assisted total knee arthroplasty. J Arthroplasty 33(7S):S121–S125. https://doi.org/10.1016/j.arth.2018.03.002

    Article  PubMed  Google Scholar 

  40. Schnaser E, Lee YY, Boettner F, Gonzalez Della Valle A (2015) The position of the patella and extensor mechanism affects intraoperative compartmental loads during total knee arthroplasty: a pilot study using intraoperative sensing to guide soft tissue balance. J Arthroplasty 30(8):1348–1353. https://doi.org/10.1016/j.arth.2015.03.004

    Article  PubMed  Google Scholar 

  41. Walker PS, Meere PA, Bell CP (2014) Effects of surgical variables in balancing of total knee replacements using an instrumented tibial trial. Knee 21(1):156–161. https://doi.org/10.1016/j.knee.2013.09.002

    Article  PubMed  Google Scholar 

  42. Meneghini RM, Ziemba-Davis MM, Lovro LR, Ireland PH, Damer BM (2016) Can intraoperative sensors determine the “target” ligament balance? Early outcomes in total knee arthroplasty. J Arthroplasty 31(10):2181–2187. https://doi.org/10.1016/j.arth.2016.03.046

    Article  PubMed  Google Scholar 

  43. Mulhall KJ, Ghomrawi HM, Scully S, Callaghan JJ, Saleh KJ (2006) Current etiologies and modes of failure in total knee arthroplasty revision. Clin Orthop Relat Res 446:45–50. https://doi.org/10.1097/01.blo.0000214421.21712.62

    Article  PubMed  Google Scholar 

  44. Song SJ, Kang SG, Lee YJ, Kim KI, Park CH (2019) An intraoperative load sensor did not improve the early postoperative results of posterior-stabilized TKA for osteoarthritis with varus deformities. Knee Surg Sports Traumatol Arthrosc 27(5):1671–1679. https://doi.org/10.1007/s00167-018-5314-7

    Article  PubMed  Google Scholar 

  45. Wood TJ, Winemaker MJ, Williams DS, Petruccelli DT, Tushinski DM, de Beer JV (2021) Randomized controlled trial of sensor-guided knee balancing compared to standard balancing technique in total knee arthroplasty. J Arthroplasty 36(3):953–957. https://doi.org/10.1016/j.arth.2020.09.025

    Article  PubMed  Google Scholar 

  46. Woon CYL, Carroll KM, Lyman S, Mayman DJ (2019) Dynamic sensor-balanced knee arthroplasty: can the sensor “train” the surgeon? Arthroplast Today 5(2):202–210. https://doi.org/10.1016/j.artd.2019.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  47. Thompson K, Griffiths-Jones W, Frendin L, Wood J, Harris IA, Chen DB et al (2020) Interobserver agreement of sensor-derived compartmental pressure measurements in computer-assisted total knee arthroplasty. Knee 27(3):717–722. https://doi.org/10.1016/j.knee.2020.02.023

    Article  PubMed  Google Scholar 

  48. Klasan A, Carter M, Holland S, Young SW (2020) Low femoral component prominence negatively influences early revision rate in robotic unicompartmental knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 28(12):3906–3911. https://doi.org/10.1007/s00167-020-05886-w

    Article  PubMed  Google Scholar 

  49. MacDessi SJ, Bhimani A, Burns AWR, Chen DB, Leong AKL, Molnar RB et al (2019) Does soft tissue balancing using intraoperative pressure sensors improve clinical outcomes in total knee arthroplasty? A protocol of a multicentre randomised controlled trial. BMJ Open 9(5):e027812. https://doi.org/10.1136/bmjopen-2018-027812

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gustke KA, Golladay GJ, Roche MW, Elson LC, Anderson CR (2014) Primary TKA patients with quantifiably balanced soft-tissue achieve significant clinical gains sooner than unbalanced patients. Adv Orthop 62:86–95. https://doi.org/10.1155/2014/628695

    Article  Google Scholar 

  51. Li X, Cai H, Yu Z, Li Z, Zhang K, Tian H et al (2020) Correlation between femorotibial pressure and joint gap in osteoarthritis patients with varus deformity: an intraoperative measurement using sensor device in primary posterior-stabilized total knee arthroplasty. Ann Transl Med 8(21):1387. https://doi.org/10.21037/atm-20-2044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

There is no funding source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Lustig.

Ethics declarations

Conflict of interest

The authors declare the following conflicts of interest: Consultant for Corin, Stryker, Smith Nephew, Heraeus, Depuy Synthes; Institutional research support from Groupe Lepine, Amplitude; Editorial Board for Journal of Bone and Joint Surgery (Am).

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batailler, C., Swan, J., Marinier, E.S. et al. Current role of intraoperative sensing technology in total knee arthroplasty. Arch Orthop Trauma Surg 141, 2255–2265 (2021). https://doi.org/10.1007/s00402-021-04130-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-021-04130-5

Keywords

Navigation