Skip to main content
Log in

Return to sport after the surgical management of articular cartilage lesions in the knee: a meta-analysis

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Optimal surgical treatment of chondral defects in an athletic population remains highly controversial and has yet to be determined. The purpose of this review was to (1) report data on return to sport and (2) compare activity and functional outcome measures following various cartilage restoration techniques.

Methods

A comprehensive review was performed for studies with return-to-sport outcomes after microfracture (MFX), osteochondral autograft transfer (OAT), osteochondral allograft transplantation (OCA), and autologous chondrocyte implantation (ACI). All studies containing return-to-sport participation with minimum 2-year post-operative activity-based outcomes were included. A meta-analysis comparing rate of return to sport between each surgical intervention was conducted using a random-effects model.

Results

Forty-four studies met inclusion criteria (18 Level I/II, 26 Level III/IV). In total, 2549 patients were included (1756 M, 793 F) with an average age of 35 years and follow-up of 47 months. Return to sport at some level was 76 % overall, with highest rates of return after OAT (93 %), followed by OCA (88 %), ACI (82 %), and MFX (58 %). Osteochondral autograft transfer showed the fastest return to sports (5.2 ± 1.8 months) compared to 9.1 ± 2.2 months for MFX, 9.6 ± 3.0 months for OCA and 11.8 ± 3.8 months for ACI (P < 0.001). A meta-regression was conducted due to heterogeneity in preoperative factors such as patient age, lesion size, and preoperative Tegner score. None of these factors were found to be significant determinants for rate of return to sport.

Conclusion

In conclusion, in this meta-analysis of 2549 athletes, cartilage restoration surgery had a 76 % return to sport at mid-term follow-up. Osteochondral autograft transfer offered a faster recovery and appeared to have a higher rate of return to preinjury athletics, but heterogeneity in lesion size, athlete age, and concomitant surgical procedures are important factors to consider when assessing individual athletes. This study reports on the rate of return to sport in athletes undergoing various procedures for symptomatic chondral defects.

Level of evidence

IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Basad E, Ishaque B, Bachmann G, Sturz H, Steinmeyer J (2010) Matrix-induced autologous chondrocyte implantation versus microfracture in the treatment of cartilage defects of the knee: a 2-year randomised study. Knee Surg Sports Traumatol Arthrosc 18:519–527

    Article  PubMed  Google Scholar 

  2. Basad E, Wissing FR, Fehrenbach P, Rickert M, Steinmeyer J, Ishaque B (2014) Matrix-induced autologous chondrocyte implantation (MACI) in the knee: clinical outcomes and challenges. Knee Surg Sports Traumatol Arthrosc 23(12):3729–3735

    Article  PubMed  Google Scholar 

  3. Bhandari M, Richards RR, Sprague S, Schemitsch EH (2002) The quality of reporting of randomized trials in the Journal of Bone and Joint Surgery from 1988 through 2000. J Bone Joint Surg Am 84-A:388–396

    Article  PubMed  Google Scholar 

  4. Blevins FT, Steadman JR, Rodrigo JJ, Silliman J (1998) Treatment of articular cartilage defects in athletes: an analysis of functional outcome and lesion appearance. Orthopedics 21:761–767 (discussion)

    CAS  PubMed  Google Scholar 

  5. Borenstein M, Hedges L, Higgins J, Rothstein H (2005) Comprehensive meta-analysis version 2. Biostat, Englewood, p 104

    Google Scholar 

  6. Cerynik DL, Lewullis GE, Joves BC, Palmer MP, Tom JA (2009) Outcomes of microfracture in professional basketball players. Knee Surg Sports Traumatol Arthrosc 17:1135–1139

    Article  PubMed  Google Scholar 

  7. Chalmers PN, Vigneswaran H, Harris JD, Cole BJ (2013) Activity-related outcomes of articular cartilage surgery: a systematic review. Cartilage 4:193–203

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cole BJ, Farr J, Winalski CS, Hosea T, Richmond J, Mandelbaum B, De Deyne PG (2011) Outcomes after a single-stage procedure for cell-based cartilage repair: a prospective clinical safety trial with 2-year follow-up. Am J Sports Med 39:1170–1179

    Article  PubMed  Google Scholar 

  9. Coleman BD, Khan KM, Maffulli N, Cook JL, Wark JD (2000) Studies of surgical outcome after patellar tendinopathy: clinical significance of methodological deficiencies and guidelines for future studies. Victorian Institute of Sport Tendon Study Group. Scand J Med Sci Sports 10:2–11

    Article  CAS  PubMed  Google Scholar 

  10. Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG (1997) Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy 13:456–460

    Article  CAS  PubMed  Google Scholar 

  11. Della Villa S, Kon E, Filardo G, Ricci M, Vincentelli F, Delcogliano M, Marcacci M (2010) Does intensive rehabilitation permit early return to sport without compromising the clinical outcome after arthroscopic autologous chondrocyte implantation in highly competitive athletes? Am J Sports Med 38:68–77

    Article  PubMed  Google Scholar 

  12. Detsky AS, Naylor CD, O’Rourke K, McGeer AJ, L’Abbe KA (1992) Incorporating variations in the quality of individual randomized trials into meta-analysis. J Clin Epidemiol 45:255–265

    Article  CAS  PubMed  Google Scholar 

  13. Drongowski RA, Coran AG, Wojtys EM (1994) Predictive value of meniscal and chondral injuries in conservatively treated anterior cruciate ligament injuries. Arthroscopy 10:97–102

    Article  CAS  PubMed  Google Scholar 

  14. Dulai SK, Slobogean BL, Beauchamp RD, Mulpuri K (2007) A quality assessment of randomized clinical trials in pediatric orthopaedics. J Pediatr Orthop 27:573–581

    Article  PubMed  Google Scholar 

  15. Ebert JR, Fallon M, Smith A, Janes GC, Wood DJ (2015) Prospective clinical and radiologic evaluation of patellofemoral matrix-induced autologous chondrocyte implantation. Am J Sports Med 43(6):1362–1372

    Article  PubMed  Google Scholar 

  16. Ebert JR, Fallon M, Zheng MH, Wood DJ, Ackland TR (2012) A randomized trial comparing accelerated and traditional approaches to postoperative weightbearing rehabilitation after matrix-induced autologous chondrocyte implantation: findings at 5 years. Am J Sports Med 40:1527–1537

    Article  PubMed  Google Scholar 

  17. Ebert JR, Robertson WB, Woodhouse J, Fallon M, Zheng MH, Ackland T, Wood DJ (2011) Clinical and magnetic resonance imaging-based outcomes to 5 years after matrix-induced autologous chondrocyte implantation to address articular cartilage defects in the knee. Am J Sports Med 39:753–763

    Article  PubMed  Google Scholar 

  18. Ebert JR, Smith A, Fallon M, Wood DJ, Ackland TR (2014) Correlation between clinical and radiological outcomes after matrix-induced autologous chondrocyte implantation in the femoral condyles. Am J Sports Med 42:1857–1864

    Article  PubMed  Google Scholar 

  19. Ferruzzi A, Buda R, Cavallo M, Timoncini A, Natali S, Giannini S (2014) Cartilage repair procedures associated with high tibial osteotomy in varus knees: clinical results at 11 years’ follow-up. Knee 21:445–450

    Article  CAS  PubMed  Google Scholar 

  20. Gilmore CJ, Cosgrove CT, Werner B, Lyons ML, Carson EW, Miller MD, Brockmeier SF, Diduch DR (2014) Accelerated return to play following osteochondral autograft plug transfer (OATS). Orthop J Sports Med 2:2325967114S2325900002

    Article  Google Scholar 

  21. Gobbi A, Francisco R (2006) Factors affecting return to sports after anterior cruciate ligament reconstruction with patellar tendon and hamstring graft: a prospective clinical investigation. Knee Surg Sports Traumatol Arthrosc 14:1021–1028

    Article  PubMed  Google Scholar 

  22. Gobbi A, Karnatzikos G, Kumar A (2014) Long-term results after microfracture treatment for full-thickness knee chondral lesions in athletes. Knee Surg Sports Traumatol Arthrosc 22:1986–1996

    Article  PubMed  Google Scholar 

  23. Gobbi A, Nunag P, Malinowski K (2005) Treatment of full thickness chondral lesions of the knee with microfracture in a group of athletes. Knee Surg Sports Traumatol Arthrosc 13:213–221

    Article  PubMed  Google Scholar 

  24. Gooding CR, Bartlett W, Bentley G, Skinner JA, Carrington R, Flanagan A (2006) A prospective, randomised study comparing two techniques of autologous chondrocyte implantation for osteochondral defects in the knee: periosteum covered versus type I/III collagen covered. Knee 13:203–210

    Article  CAS  PubMed  Google Scholar 

  25. Gracitelli GC, Meric G, Pulido PA, Gortz S, De Young AJ, Bugbee WD (2015) Fresh osteochondral allograft transplantation for isolated patellar cartilage injury. Am J Sports Med 43:879–884

    Article  PubMed  Google Scholar 

  26. Gudas R, Gudaite A, Mickevicius T, Masiulis N, Simonaityte R, Cekanauskas E, Skurvydas A (2013) Comparison of osteochondral autologous transplantation, microfracture, or debridement techniques in articular cartilage lesions associated with anterior cruciate ligament injury: a prospective study with a 3-year follow-up. Arthroscopy 29:89–97

    Article  PubMed  Google Scholar 

  27. Gudas R, Gudaite A, Pocius A, Gudiene A, Cekanauskas E, Monastyreckiene E, Basevicius A (2012) Ten-year follow-up of a prospective, randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint of athletes. Am J Sports Med 40:2499–2508

    Article  PubMed  Google Scholar 

  28. Gudas R, Kalesinskas RJ, Kimtys V, Stankevicius E, Toliusis V, Bernotavicius G, Smailys A (2005) A prospective randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint in young athletes. Arthroscopy 21:1066–1075

    Article  PubMed  Google Scholar 

  29. Gudas R, Stankevicius E, Monastyreckiene E, Pranys D, Kalesinskas RJ (2006) Osteochondral autologous transplantation versus microfracture for the treatment of articular cartilage defects in the knee joint in athletes. Knee Surg Sports Traumatol Arthrosc 14:834–842

    Article  PubMed  Google Scholar 

  30. Harris JD, Erickson BJ, Cvetanovich GL, Abrams GD, McCormick FM, Gupta AK, Verma NN, Bach BR Jr, Cole BJ (2014) Development of a valid and reliable knee articular cartilage condition-specific study methodological quality score. Orthop J Sports Med 2:2325967113512606

    PubMed  PubMed Central  Google Scholar 

  31. Hindle P, Hendry JL, Keating JF, Biant LC (2014) Autologous osteochondral mosaicplasty or TruFit plugs for cartilage repair. Knee Surg Sports Traumatol Arthrosc 22:1235–1240

    Article  PubMed  Google Scholar 

  32. Horas U, Pelinkovic D, Herr G, Aigner T, Schnettler R (2003) Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint. A prospective, comparative trial. J Bone Joint Surg Am 85-A:185–192

    Article  CAS  PubMed  Google Scholar 

  33. Jakobsen RB, Engebretsen L, Slauterbeck JR (2005) An analysis of the quality of cartilage repair studies. J Bone Joint Surg Am 87:2232–2239

    PubMed  Google Scholar 

  34. Kish G, Modis L, Hangody L (1999) Osteochondral mosaicplasty for the treatment of focal chondral and osteochondral lesions of the knee and talus in the athlete. Rationale, indications, techniques, and results. Clin Sports Med 18:45–66 (vi)

    Article  CAS  PubMed  Google Scholar 

  35. Knutsen G, Drogset JO, Engebretsen L, Grontvedt T, Isaksen V, Ludvigsen TC, Roberts S, Solheim E, Strand T, Johansen O (2007) A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am 89:2105–2112

    PubMed  Google Scholar 

  36. Kon E, Filardo G, Berruto M, Benazzo F, Zanon G, Della Villa S, Marcacci M (2011) Articular cartilage treatment in high-level male soccer players: a prospective comparative study of arthroscopic second-generation autologous chondrocyte implantation versus microfracture. Am J Sports Med 39:2549–2557

    Article  PubMed  Google Scholar 

  37. Kon E, Filardo G, Condello V, Collarile M, Di Martino A, Zorzi C, Marcacci M (2011) Second-generation autologous chondrocyte implantation: results in patients older than 40 years. Am J Sports Med 39:1668–1675

    Article  PubMed  Google Scholar 

  38. Kon E, Gobbi A, Filardo G, Delcogliano M, Zaffagnini S, Marcacci M (2009) Arthroscopic second-generation autologous chondrocyte implantation compared with microfracture for chondral lesions of the knee: prospective nonrandomized study at 5 years. Am J Sports Med 37:33–41

    Article  PubMed  Google Scholar 

  39. Kreuz PC, Steinwachs M, Erggelet C, Lahm A, Krause S, Ossendorf C, Meier D, Ghanem N, Uhl M (2007) Importance of sports in cartilage regeneration after autologous chondrocyte implantation: a prospective study with a 3-year follow-up. Am J Sports Med 35:1261–1268

    Article  PubMed  Google Scholar 

  40. Krych AJ, Harnly HW, Rodeo SA, Williams RJ III (2012) Activity levels are higher after osteochondral autograft transfer mosaicplasty than after microfracture for articular cartilage defects of the knee: a retrospective comparative study. J Bone Joint Surg Am 94:971–978

    Article  PubMed  Google Scholar 

  41. Krych AJ, Robertson CM, Williams RJ 3rd (2012) Return to athletic activity after osteochondral allograft transplantation in the knee. Am J Sports Med 40:1053–1059

    Article  PubMed  Google Scholar 

  42. Lim HC, Bae JH, Song SH, Park YE, Kim SJ (2012) Current treatments of isolated articular cartilage lesions of the knee achieve similar outcomes. Clin Orthop Relat Res 470:2261–2267

    Article  PubMed  PubMed Central  Google Scholar 

  43. Logan M, Watts M, Owen J, Myers P (2009) Meniscal repair in the elite athlete: results of 45 repairs with a minimum 5-year follow-up. Am J Sports Med 37:1131–1134

    Article  PubMed  Google Scholar 

  44. Marcacci M, Kon E, Delcogliano M, Filardo G, Busacca M, Zaffagnini S (2007) Arthroscopic autologous osteochondral grafting for cartilage defects of the knee: prospective study results at a minimum 7-year follow-up. Am J Sports Med 35:2014–2021

    Article  PubMed  Google Scholar 

  45. Marder RA, Hopkins G Jr, Timmerman LA (2005) Arthroscopic microfracture of chondral defects of the knee: a comparison of two postoperative treatments. Arthroscopy 21:152–158

    Article  PubMed  Google Scholar 

  46. McCulloch PC, Kang RW, Sobhy MH, Hayden JK, Cole BJ (2007) Prospective evaluation of prolonged fresh osteochondral allograft transplantation of the femoral condyle: minimum 2-year follow-up. Am J Sports Med 35:411–420

    Article  PubMed  Google Scholar 

  47. Meyerkort D, Ebert JR, Ackland TR, Robertson WB, Fallon M, Zheng MH, Wood DJ (2014) Matrix-induced autologous chondrocyte implantation (MACI) for chondral defects in the patellofemoral joint. Knee Surg Sports Traumatol Arthrosc 22:2522–2530

    Article  PubMed  Google Scholar 

  48. Micheli LJ, Browne JE, Erggelet C, Fu F, Mandelbaum B, Moseley JB, Zurakowski D (2001) Autologous chondrocyte implantation of the knee: multicenter experience and minimum 3-year follow-up. Clin J Sport Med 11:223–228

    Article  CAS  PubMed  Google Scholar 

  49. Miller DJ, Smith MV, Matava MJ, Wright RW, Brophy RH (2015) Microfracture and osteochondral autograft transplantation are cost-effective treatments for articular cartilage lesions of the distal femur. Am J Sports Med 43:2175–2181

    Article  PubMed  Google Scholar 

  50. Minas T, Von Keudell A, Bryant T, Gomoll A (2014) The John Insall Award: a minimum 10-year outcome study of autologous chondrocyte implantation. Clin Orthop Relat Res 472:41–51

    Article  PubMed  Google Scholar 

  51. Mithoefer K, Hambly K, Della Villa S, Silvers H, Mandelbaum BR (2009) Return to sports participation after articular cartilage repair in the knee: scientific evidence. Am J Sports Med 37(Suppl 1):167S–176S

    Article  PubMed  Google Scholar 

  52. Mithoefer K, Williams RJ 3rd, Warren RF, Wickiewicz TL, Marx RG (2006) High-impact athletics after knee articular cartilage repair: a prospective evaluation of the microfracture technique. Am J Sports Med 34:1413–1418

    Article  PubMed  Google Scholar 

  53. Mithofer K, Minas T, Peterson L, Yeon H, Micheli LJ (2005) Functional outcome of knee articular cartilage repair in adolescent athletes. Am J Sports Med 33:1147–1153

    Article  PubMed  Google Scholar 

  54. Mithofer K, Peterson L, Mandelbaum BR, Minas T (2005) Articular cartilage repair in soccer players with autologous chondrocyte transplantation: functional outcome and return to competition. Am J Sports Med 33:1639–1646

    Article  PubMed  Google Scholar 

  55. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097

    Article  PubMed  PubMed Central  Google Scholar 

  56. Murray IR, Benke MT, Mandelbaum BR (2016) Management of knee articular cartilage injuries in athletes: chondroprotection, chondrofacilitation, and resurfacing. Knee Surg Sports Traumatol Arthrosc 24(5):1617–1626

    Article  PubMed  Google Scholar 

  57. Namdari S, Baldwin K, Anakwenze O, Park MJ, Huffman GR, Sennett BJ (2009) Results and performance after microfracture in National Basketball Association athletes. Am J Sports Med 37:943–948

    Article  PubMed  Google Scholar 

  58. Nho SJ, Pensak MJ, Seigerman DA, Cole BJ (2010) Rehabilitation after autologous chondrocyte implantation in athletes. Clin Sports Med 29:267–282

    Article  PubMed  Google Scholar 

  59. Niemeyer P, Kostler W, Salzmann GM, Lenz P, Kreuz PC, Sudkamp NP (2010) Autologous chondrocyte implantation for treatment of focal cartilage defects in patients age 40 years and older: a matched-pair analysis with 2-year follow-up. Am J Sports Med 38:2410–2416

    Article  PubMed  Google Scholar 

  60. Panagopoulos A, van Niekerk L, Triantafillopoulos I (2012) Autologous chondrocyte implantation for knee cartilage injuries: moderate functional outcome and performance in patients with high-impact activities. Orthopedics 35:e6–e14

    Article  PubMed  Google Scholar 

  61. Panics G, Hangody LR, Balo E, Vasarhelyi G, Gal T, Hangody L (2012) Osteochondral autograft and mosaicplasty in the football (soccer) athlete. Cartilage 3:25s–30s

    Article  PubMed  PubMed Central  Google Scholar 

  62. Pestka JM, Bode G, Salzmann G, Sudkamp NP, Niemeyer P (2012) Clinical outcome of autologous chondrocyte implantation for failed microfracture treatment of full-thickness cartilage defects of the knee joint. Am J Sports Med 40:325–331

    Article  PubMed  Google Scholar 

  63. Peterson L, Vasiliadis HS, Brittberg M, Lindahl A (2010) Autologous chondrocyte implantation: a long-term follow-up. Am J Sports Med 38:1117–1124

    Article  PubMed  Google Scholar 

  64. Piasecki DP, Spindler KP, Warren TA, Andrish JT, Parker RD (2003) Intraarticular injuries associated with anterior cruciate ligament tear: findings at ligament reconstruction in high school and recreational athletes. An analysis of sex-based differences. Am J Sports Med 31:601–605

    Article  PubMed  Google Scholar 

  65. Riyami M, Rolf C (2009) Evaluation of microfracture of traumatic chondral injuries to the knee in professional football and rugby players. J Orthop Surg Res 4:13

    Article  PubMed  PubMed Central  Google Scholar 

  66. Saris D, Price A, Widuchowski W, Bertrand-Marchand M, Caron J, Drogset JO, Emans P, Podskubka A, Tsuchida A, Kili S, Levine D, Brittberg M (2014) Matrix-applied characterized autologous cultured chondrocytes versus microfracture: two-year follow-up of a prospective randomized trial. Am J Sports Med 42:1384–1394

    Article  PubMed  Google Scholar 

  67. Steadman JR, Hanson CM, Briggs KK, Matheny LM, James EW, Guillet A (2014) Outcomes after knee microfracture of chondral defects in alpine ski racers. J Knee Surg 27:407–410

    Article  PubMed  Google Scholar 

  68. Steadman JR, Miller BS, Karas SG, Schlegel TF, Briggs KK, Hawkins RJ (2003) The microfracture technique in the treatment of full-thickness chondral lesions of the knee in National Football League players. J Knee Surg 16:83–86

    PubMed  Google Scholar 

  69. Vanlauwe J, Saris DB, Victor J, Almqvist KF, Bellemans J, Luyten FP (2011) Five-year outcome of characterized chondrocyte implantation versus microfracture for symptomatic cartilage defects of the knee: early treatment matters. Am J Sports Med 39:2566–2574

    Article  PubMed  Google Scholar 

  70. Wondrasch B, Risberg MA, Zak L, Marlovits S, Aldrian S (2015) Effect of accelerated weightbearing after matrix-associated autologous chondrocyte implantation on the femoral condyle: a prospective, randomized controlled study presenting MRI-based and clinical outcomes after 5 years. Am J Sports Med 43:146–153

    Article  PubMed  Google Scholar 

  71. Zak L, Aldrian S, Wondrasch B, Albrecht C, Marlovits S (2012) Ability to return to sports 5 years after matrix-associated autologous chondrocyte transplantation in an average population of active patients. Am J Sports Med 40:2815–2821

    Article  PubMed  Google Scholar 

  72. Zaslav K, Cole B, Brewster R, DeBerardino T, Farr J, Fowler P, Nissen C (2009) A prospective study of autologous chondrocyte implantation in patients with failed prior treatment for articular cartilage defect of the knee: results of the Study of the Treatment of Articular Repair (STAR) clinical trial. Am J Sports Med 37:42–55

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron J. Krych.

Ethics declarations

Conflict of interest

The authors report the following potential conflict of interest or source of funding: B.A.L. reports personal fees from Arthrex, Stryker, VOT Solutions, and Biomet, outside the submitted work. M.J.S. reports personal fees from Arthrex and Stryker, outside the submitted work and serves on the editorial or governing board for AJSM. R.J.W. reports personal fees from Arthrex, Cymedica, Histogenics Inc, Zimmer, R2T2 Laboratories, Springer and serves on the editorial or governing board of J. Robert Gladden Society. A.J.K. reports personal fees from Arthrex, Arthritis Foundation, and Histogenics, outside the submitted work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krych, A.J., Pareek, A., King, A.H. et al. Return to sport after the surgical management of articular cartilage lesions in the knee: a meta-analysis. Knee Surg Sports Traumatol Arthrosc 25, 3186–3196 (2017). https://doi.org/10.1007/s00167-016-4262-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-016-4262-3

Keywords

Navigation