Skip to main content
Log in

Patient-specific instrumentation development in TKA: 1st and 2nd generation designs in comparison with conventional instrumentation

  • Knee Arthroplasty
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

This study was conducted to determine if the difference in magnetic resonance imaging (MRI)-based 2nd generation patient-specific instrumentation (PSI) design affects post-operative restoration of neutral mechanical alignment in total knee arthroplasty (TKA) compared with the 1st generation PSI design and conventional surgical techniques. In addition, it is aimed at elucidating whether PSI improves surgical efficiency with respect to operating room time, estimated blood loss and the number of instrument trays used intra-operatively.

Materials and methods

We report our experience in TKA using PSI techniques in 234 patients from August 2012 to March 2015. The patients were divided into 1st (n = 64) and 2nd (n = 70) generation PSI design. The control group (n = 100) underwent TKA with the conventional instrument technique.

Results

The mean surgical time was significantly shorter in the 2nd generation PSI design (62.1 ± 12.1 min) than in the control group (80.6 ± 21.7 min; P < 0.001). A mechanical axis malalignment of >3° of the lower limb was observed in 5.7% of the patients in 2nd generation PSI design compared with 26.0% of the control group (P = 0.006). No significant difference in mechanical alignment on post-operative long alignment radiography was found between 20.3% of the patients in 1st generation PSI design and the control group (P = 0.584).

Conclusion

The 1st generation PSI design did not have a shorter surgical time or improved alignment compared with conventional instrumentation (CI). However, the use of the perfectly fitted 2nd generation PSI design was associated with improvements in both of these measurements. This study emphasizes the importance of PSI design in intra-operative and post-operative outcomes of TKA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Boni T (1996) Knee problems from a medical history viewpoint. Ther Umsch 53(10):716–723

    CAS  PubMed  Google Scholar 

  2. Jeffery RS, Morris RW, Denham RA (1991) Coronal alignment after total knee replacement. J Bone Joint Surg Br 73(5):709–714

    CAS  PubMed  Google Scholar 

  3. van der Linden-van der Zwaag HM, Bos J, van der Heide HJ, Nelissen RG (2011) A computed tomography based study on rotational alignment accuracy of the femoral component in total knee arthroplasty using computer-assisted orthopaedic surgery. Int Orthop 35 (6):845–850

  4. Magnussen RA, Weppe F, Demey G, Servien E, Lustig S (2011) Residual varus alignment does not compromise results of TKAs in patients with preoperative varus. Clin Orthop Relat Res 469(12):3443–3450

    Article  PubMed  PubMed Central  Google Scholar 

  5. Victor J, Hoste D (2004) Image-based computer-assisted total knee arthroplasty leads to lower variability in coronal alignment. Clin Orthop Relat Res 428:131–139

    Article  Google Scholar 

  6. Mason JB, Fehring TK, Estok R, Banel D, Fahrbach K (2007) Meta-analysis of alignment outcomes in computer-assisted total knee arthroplasty surgery. J Arthroplasty 22(8):1097–1106

    Article  PubMed  Google Scholar 

  7. Hetaimish BM, Khan MM, Simunovic N, Al-Harbi HH, Bhandari M, Zalzal PK (2012) Meta-analysis of navigation vs conventional total knee arthroplasty. J Arthroplasty 27(6):1177–1182

    Article  PubMed  Google Scholar 

  8. Blakeney WG, Khan RJ, Wall SJ (2011) Computer-assisted techniques versus conventional guides for component alignment in total knee arthroplasty: a randomized controlled trial. J Bone Joint Surg Am 93(15):1377–1384

    Article  PubMed  Google Scholar 

  9. Dutton AQ, Yeo SJ, Yang KY, Lo NN, Chia KU, Chong HC (2008) Computer-assisted minimally invasive total knee arthroplasty compared with standard total knee arthroplasty. A prospective, randomized study. J Bone Joint Surg Am 90(1):2–9

    Article  PubMed  Google Scholar 

  10. Nunley RM, Ellison BS, Ruh EL, Williams BM, Foreman K, Ford AD, Barrack RL (2012) Are patient-specific cutting blocks cost-effective for total knee arthroplasty? Clin Orthop Relat Res 470(3):889–894

    Article  PubMed  Google Scholar 

  11. Renson L, Poilvache P, Van den Wyngaert H (2014) Improved alignment and operating room efficiency with patient-specific instrumentation for TKA. Knee 21(6):1216–1220

    Article  PubMed  Google Scholar 

  12. Krishnan SP, Dawood A, Richards R, Henckel J, Hart AJ (2012) A review of rapid prototyped surgical guides for patient-specific total knee replacement. J Bone Joint Surg Br 94(11):1457–1461

    Article  CAS  PubMed  Google Scholar 

  13. Asada S, Mori S, Matsushita T, Nakagawa K, Tsukamoto I, Akagi M (2014) Comparison of MRI- and CT-based patient-specific guides for total knee arthroplasty. Knee 21(6):1238–1243

    Article  PubMed  Google Scholar 

  14. Hamilton WG, Parks NL, Saxena A (2013) Patient-specific instrumentation does not shorten surgical time: a prospective, randomized trial. J Arthroplasty 28(8):96–100

    Article  PubMed  Google Scholar 

  15. Ivie CB, Probst PJ, Bal AK, Stannard JT, Crist BD, Sonny Bal B (2014) Improved radiographic outcomes with patient-specific total knee arthroplasty. J Arthroplasty 29(11):2100–2103

    Article  PubMed  Google Scholar 

  16. Anderl W, Pauzenberger L, Kolblinger R, Kiesselbach G, Brandl G, Laky B, Kriegleder B, Heuberer P, Schwameis E (2016) Patient-specific instrumentation improved mechanical alignment, while early clinical outcome was comparable to conventional instrumentation in TKA. Knee Surg Sports Traumatol Arthrosc 24(1):102–111

    Article  PubMed  Google Scholar 

  17. Sassoon A, Nam D, Nunley R, Barrack R (2015) Systematic review of patient-specific instrumentation in total knee arthroplasty: new but not improved. Clin Orthop Relat Res 473(1):151–158

    Article  PubMed  Google Scholar 

  18. Sloten JV (2015) A crash course on the concept of accuracy. Materialise world conference Brussels, Belgium

    Google Scholar 

  19. Victor J, Dujardin J, Vandenneucker H, Arnout N, Bellemans J (2014) Patient-specific guides do not improve accuracy in total knee arthroplasty: a prospective randomized controlled trial. Clin Orthop Relat Res 472(1):263–271

    Article  PubMed  Google Scholar 

  20. Seon JK, Park HW, Yoo SH, Song EK (2014) Assessing the accuracy of patient-specific guides for total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc (Epub ahead of print)

  21. Stockmans F (2015) Forget just seeing bone, start reading bone with CBCT. Materialise world conference, Brussels

    Google Scholar 

  22. Stronach BM, Pelt CE, Erickson J, Peters CL (2013) Patient-specific total knee arthroplasty required frequent surgeon-directed changes. Clin Orthop Relat Res 471(1):169–174

    Article  PubMed  Google Scholar 

  23. Hafez MA, Chelule KL, Seedhom BB, Sherman KP (2006) Computer-assisted total knee arthroplasty using patient-specific templating. Clin Orthop Relat Res 444:184–192

    Article  CAS  PubMed  Google Scholar 

  24. Brown GA, Firoozbakhsh K, DeCoster TA, Reyna JR, Jr., Moneim M (2003) Rapid prototyping: the future of trauma surgery? J Bone Joint Surg Am 85-A(Suppl 4):49–55

  25. Tigani D, Busacca M, Moio A, Rimondi E, Del Piccolo N, Sabbioni G (2009) Preliminary experience with electromagnetic navigation system in TKA. Knee 16(1):33–38

    Article  CAS  PubMed  Google Scholar 

  26. Heyse TJ, le Chong R, Davis J, Boettner F, Haas SB, Potter HG (2012) MRI analysis for rotation of total knee components. Knee 19(5):571–575

    Article  PubMed  Google Scholar 

  27. Berger RA, Crossett LS, Jacobs JJ, Rubash HE (1998) Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop Relat Res 356:144–153

    Article  Google Scholar 

  28. Kurtz S, Ong K, Lau E, Mowat F, Halpern M (2007) Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 89(4):780–785

    PubMed  Google Scholar 

  29. Slover JD, Tosteson AN, Bozic KJ, Rubash HE, Malchau H (2008) Impact of hospital volume on the economic value of computer navigation for total knee replacement. J Bone Joint Surg Am 90(7):1492–1500

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tibesku CO, Hofer P, Portegies W, Ruys CJ, Fennema P (2013) Benefits of using customized instrumentation in total knee arthroplasty: results from an activity-based costing model. Arch Orthop Trauma Surg 133(3):405–411

    Article  PubMed  Google Scholar 

  31. Koo S, Gold GE, Andriacchi TP (2005) Considerations in measuring cartilage thickness using MRI: factors influencing reproducibility and accuracy. Osteoarthritis Cartilage 13(9):782–789

    Article  CAS  PubMed  Google Scholar 

  32. Hommel H, Perka C, Pfitzner T (2016) Preliminary results of a new surgical technique in total knee arthroplasty (TKA) using the native ligament tension for femoral implant positioning in varus osteoarthritis. Arch Orthop Trauma Surg 136(7):991–997

    Article  PubMed  Google Scholar 

  33. Hommel H, Perka C (2015) Gap-balancing technique combined with patient-specific instrumentation in TKA. Arch Orthop Trauma Surg 135(11):1603–1608

    Article  PubMed  Google Scholar 

  34. Heyse TJ, Tibesku CO (2014) Improved femoral component rotation in TKA using patient-specific instrumentation. Knee 21(1):268–271

    Article  PubMed  Google Scholar 

  35. Heyse TJ, Tibesku CO (2015) Improved tibial component rotation in TKA using patient-specific instrumentation. Arch Orthop Trauma Surg 135(5):697–701

    Article  PubMed  Google Scholar 

  36. Charrois O, Kahwaji A, Vastel L, Rosencher N, Courpied JP (2001) Blood loss in total hip arthroplasty for rapidly destructive coxarthrosis. Int Orthop 25(1):22–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Gon Koh.

Ethics declarations

Conflict of interest

The authors received no funding for this study and report no conflicts of interest.

Additional information

Oh-Ryong Kwon and Kyoung-Tak Kang contributed equally to this work and should be considered co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, OR., Kang, KT., Son, J. et al. Patient-specific instrumentation development in TKA: 1st and 2nd generation designs in comparison with conventional instrumentation. Arch Orthop Trauma Surg 137, 111–118 (2017). https://doi.org/10.1007/s00402-016-2618-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-016-2618-2

Keywords

Navigation