Skip to main content

Advertisement

Log in

Meniscus reconstruction: today’s achievements and premises for the future

  • Arthroscopy and Sports Medicine
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Injuries of the meniscus remain a burden for the development of premature cartilage degeneration and osteoarthritis. This review surveys all treatment options and focuses on the recent development of tissue engineering. Tissue engineering of the meniscus means a successful combination of cells, scaffolds and specific stimuli. Each element of the combination can be subject to variation. Studies investigating the optimum meniscus implant and previous steps in producing these implants are presented in this article. A comprehensive search of the English and German literature was performed in PubMed to retrieve appropriate manuscripts for review. Based on the literatures, autografts and allografts can delay the progress of osteoarthritis for a restricted time period, but several concerns persist. The biomechanical properties of the native meniscus are not copied entirely by the current existing autografts. Congruence, fixation, biocompatibility and potential infection will always remain as limitations for the users of allografts. Long-term results are still not available for meniscus prosthesis and even though it permits fast recovery, several aspects are questionable: bioincompatibility and a lack of cellular adhesion are likely to compromise their long-term fate. Currently, there is no ideal implant generated by means of tissue engineering. However, meniscus tissue engineering is a fast developing field, which promises to develop an implant that mimics histological and biomechanical properties of the native meniscus. At present several cell sources and scaffolds have been used successfully to grow 3-dimensional constructs. In future, optimal implants have to be developed using growth factors, modified scaffolds and stimuli that support cellular proliferation and differentiation to regenerate the native meniscus more closely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hough AJ Jr, Webber RJ (1990) Pathology of the meniscus. Clin Orthop Relat Res 252:32–40

    PubMed  Google Scholar 

  2. Brighton CT, Heppenstall RB, Labosky DA (1971) An oxygen microelectrode suitable for cartilage and cancellous bone. Clin Orthop Relat Res 80:161–166

    Article  PubMed  CAS  Google Scholar 

  3. Fehrmann P, Mockenhaupt J (1991) Theoretical and experimental analysis of the significance of the intact and damaged meniscus for static stress on the knee joint. Unfallchirurgie 17(4):187–193

    Article  PubMed  CAS  Google Scholar 

  4. Jaspers P, de Lange A, Huiskes R, van Rens TJ (1980) The mechanical function of the meniscus, experiments on cadaveric pig knee-joints. Acta Orthop Belg 46(6):663–668

    PubMed  CAS  Google Scholar 

  5. Krause WR, Pope MH, Johnson RJ, Wilder DG (1976) Mechanical changes in the knee after meniscectomy. J Bone Jt Surg Am 58(5):599–604

    CAS  Google Scholar 

  6. Yamazaki K, Tachibana Y (2003) Vascularized synovial flap promoting regeneration of the cryopreserved meniscal allograft: experimental study in rabbits. J Orthop Sci 8(1):62–68. doi:10.1007/s007760300010

    Article  PubMed  Google Scholar 

  7. DeHaven KE (1985) Rationale for meniscus repair or excision. Clin Sports Med 4(2):267–273

    PubMed  CAS  Google Scholar 

  8. Lee SJ, Aadalen KJ, Malaviya P, Lorenz EP, Hayden JK, Farr J, Kang RW, Cole BJ (2006) Tibiofemoral contact mechanics after serial medial meniscectomies in the human cadaveric knee. Am J Sports Med 34(8):1334–1344. doi:10.1177/0363546506286786

    Article  PubMed  Google Scholar 

  9. Newman AP, Daniels AU, Burks RT (1993) Principles and decision making in meniscal surgery. Arthroscopy 9(1):33–51

    Article  PubMed  CAS  Google Scholar 

  10. Englund M, Roos EM, Roos HP, Lohmander LS (2001) Patient-relevant outcomes fourteen years after meniscectomy: influence of type of meniscal tear and size of resection. Rheumatology (Oxford) 40(6):631–639

    Article  CAS  Google Scholar 

  11. Fairbank TJ (1948) Knee joint changes after meniscectomy. J Bone Jt Surg Br 30B(4):664–670

    CAS  Google Scholar 

  12. Lanzer WL, Komenda G (1990) Changes in articular cartilage after meniscectomy. Clin Orthop Relat Res 252:41–48

    PubMed  Google Scholar 

  13. Noble J (1975) Clinical features of the degenerate meniscus with the results of meniscectomy. Br J Surg 62(12):977–981

    Article  PubMed  CAS  Google Scholar 

  14. Roos H, Lauren M, Adalberth T, Roos EM, Jonsson K, Lohmander LS (1998) Knee osteoarthritis after meniscectomy: prevalence of radiographic changes after twenty-one years, compared with matched controls. Arthritis Rheum 41(4):687–693. doi:10.1002/1529-0131(199804)41:4<687:AID-ART16>3.0.CO;2-2

    Article  PubMed  CAS  Google Scholar 

  15. Tapper EM, Hoover NW (1969) Late results after meniscectomy. J Bone Jt Surg Am 51(3):517–526 (passim)

    CAS  Google Scholar 

  16. Klein W, Schulitz KP (1983) Arthroscopic meniscectomy. Technique, problems, complications, and follow-up results. Arch Orthop Trauma Surg 101(4):231–237

    Article  PubMed  CAS  Google Scholar 

  17. Arnoczky SP (1999) Building a meniscus. Biologic considerations. Clin Orthop Relat Res (367 Suppl):S244-253

  18. Aufderheide AC, Athanasiou KA (2006) A direct compression stimulator for articular cartilage and meniscal explants. Ann Biomed Eng 34(9):1463–1474. doi:10.1007/s10439-006-9157-x

    Article  PubMed  Google Scholar 

  19. Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98(5):1076–1084. doi:10.1002/jcb.20886

    Article  PubMed  CAS  Google Scholar 

  20. Habata T, Ishimura M, Ohgushi H, Tamai S, Fujisawa Y (1998) Axial alignment of the lower limb in patients with isolated meniscal tear. J Orthop Sci 3(2):85–89

    Article  PubMed  CAS  Google Scholar 

  21. Ericsson YB, Roos EM, Dahlberg L (2006) Muscle strength, functional performance, and self-reported outcomes four years after arthroscopic partial meniscectomy in middle-aged patients. Arthritis Rheum 55(6):946–952. doi:10.1002/art.22346

    Article  PubMed  Google Scholar 

  22. Pressel T, G VL, Kohn D, Wirth CJ (2005) Meniscus replacement with quadriceps tendon–a long-term analysis. Z Orthop Ihre Grenzgeb 143(1):42–47. doi:10.1055/s-2005-836359

    Article  PubMed  CAS  Google Scholar 

  23. Hershman EB, Nisonson B (1983) Arthroscopic meniscectomy: a follow-up report. Am J Sports Med 11(4):253–257

    Article  PubMed  CAS  Google Scholar 

  24. Wirth CJ, Peters G, Milachowski KA, Weismeier KG, Kohn D (2002) Long-term results of meniscal allograft transplantation. Am J Sports Med 30(2):174–181

    PubMed  Google Scholar 

  25. van Arkel ER, de Boer HH (2002) Survival analysis of human meniscal transplantations. J Bone Jt Surg Br 84(2):227–231

    Article  Google Scholar 

  26. Peters G, Wirth CJ (2003) The current state of meniscal allograft transplantation and replacement. Knee 10(1):19–31

    Article  PubMed  Google Scholar 

  27. Helfet AJ (1959) Mechanism of derangements of the medial semilunar cartilage and their management. J Bone Jt Surg Br 41-B(2):319–336

    CAS  Google Scholar 

  28. Levy IM, Torzilli PA, Gould JD, Warren RF (1989) The effect of lateral meniscectomy on motion of the knee. J Bone Jt Surg Am 71(3):401–406

    CAS  Google Scholar 

  29. Simon WH, Friedenberg S, Richardson S (1973) Joint congruence. A correlation of joint congruence and thickness of articular cartilage in dogs. J Bone Jt Surg Am 55(8):1614–1620

    CAS  Google Scholar 

  30. Walker PS, Erkman MJ (1975) The role of the menisci in force transmission across the knee. Clin Orthop Relat Res 109:184–192

    Article  PubMed  Google Scholar 

  31. Simonian PT, Sussmann PS, van Trommel M, Wickiewicz TL, Warren RF (1997) Popliteomeniscal fasciculi and lateral meniscal stability. Am J Sports Med 25(6):849–853

    Article  PubMed  CAS  Google Scholar 

  32. Staubli HU, Birrer S (1990) The popliteus tendon and its fascicles at the popliteal hiatus: gross anatomy and functional arthroscopic evaluation with and without anterior cruciate ligament deficiency. Arthroscopy 6(3):209–220

    Article  PubMed  CAS  Google Scholar 

  33. Cole BJ, Carter TR, Rodeo SA (2003) Allograft meniscal transplantation: background, techniques, and results. Instr Course Lect 52:383–396

    PubMed  Google Scholar 

  34. Thompson WO, Thaete FL, Fu FH, Dye SF (1991) Tibial meniscal dynamics using three-dimensional reconstruction of magnetic resonance images. Am J Sports Med 19(3):210–215 (discussion 215–216)

    Article  PubMed  CAS  Google Scholar 

  35. McDevitt CA, Webber RJ (1990) The ultrastructure and biochemistry of meniscal cartilage. Clin Orthop Relat Res 252:8–18

    PubMed  Google Scholar 

  36. McNicol D, Roughley PJ (1980) Extraction and characterization of proteoglycan from human meniscus. Biochem J 185(3):705–713

    PubMed  CAS  Google Scholar 

  37. AufderHeide AC, Athanasiou KA (2004) Mechanical stimulation toward tissue engineering of the knee meniscus. Ann Biomed Eng 32(8):1161–1174

    Article  PubMed  Google Scholar 

  38. Kambic HE, McDevitt CA (2005) Spatial organization of types I and II collagen in the canine meniscus. J Orthop Res 23(1):142–149. doi:10.1016/j.orthres.2004.06.016

    Article  PubMed  CAS  Google Scholar 

  39. Saamanen AM, Tammi M, Kiviranta I, Helminen HJ (1988) Running exercise as a modulatory of proteoglycan matrix in the articular cartilage of young rabbits. Int J Sports Med 9(2):127–133. doi:10.1055/s-2007-1024993

    Article  PubMed  CAS  Google Scholar 

  40. Cox JS, Nye CE, Schaefer WW, Woodstein IJ (1975) The degenerative effects of partial and total resection of the medial meniscus in dogs’ knees. Clin Orthop Relat Res 109:178–183

    Article  PubMed  Google Scholar 

  41. Kobayashi M, Toguchida J, Oka M (2003) Preliminary study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. Biomaterials 24(4):639–647

    Article  PubMed  CAS  Google Scholar 

  42. Milachowski KA, Kohn D, Wirth CJ (1990) Meniscus replacement using Hoffa’s infrapatellar fat bodies–initial clinical results. Unfallchirurgie 16(4):190–195

    Article  PubMed  CAS  Google Scholar 

  43. Johnson LL, Feagin JA Jr (2000) Autogenous tendon graft substitution for absent knee joint meniscus: a pilot study. Arthroscopy 16(2):191–196

    Article  PubMed  CAS  Google Scholar 

  44. Kohn D (1993) Autograft meniscus replacement: experimental and clinical results. Knee Surg Sports Traumatol Arthrosc 1(2):123–125

    Article  PubMed  CAS  Google Scholar 

  45. Kohn D, Wirth CJ, Reiss G, Plitz W, Maschek H, Erhardt W, Wulker N (1992) Medial meniscus replacement by a tendon autograft. Experiments in sheep. J Bone Jt Surg Br 74(6):910–917

    CAS  Google Scholar 

  46. Lecumberri JJ, Diaz de Rada MO, Santamaria M (1997) Study of meniscal regeneration following total meniscectomy and the replacement of meniscus by different autologous plasties. An Sist Sanit Navar 20(2):165–174

    PubMed  CAS  Google Scholar 

  47. Pressel T, G VL, Kohn D, Wirth CJ (2005) Meniscus replacement with quadriceps tendon–a long-term analysis. Z Orthop Ihre Grenzgeb 143(1):42–47. doi:10.1055/s-2005-836359

    Article  PubMed  CAS  Google Scholar 

  48. Walsh CJ, Goodman D, Caplan AI, Goldberg VM (1999) Meniscus regeneration in a rabbit partial meniscectomy model. Tissue Eng 5(4):327–337

    Article  PubMed  CAS  Google Scholar 

  49. Cisa J, Basora J, Madarnas P, Ghibely A, Navarro-Quilis A (1995) Meniscal repair by synovial flap transfer. Healing of the avascular zone in rabbits. Acta Orthop Scand 66(1):38–40

    Article  PubMed  CAS  Google Scholar 

  50. Kobuna Y, Shirakura K, Niijima M (1995) Meniscal repair using a flap of synovium. An experimental study in the dog. Am J Knee Surg 8(2):52–55

    PubMed  CAS  Google Scholar 

  51. Bruns J, Kahrs J, Kampen J, Behrens P, Plitz W (1998) Autologous perichondral tissue for meniscal replacement. J Bone Jt Surg Br 80(5):918–923

    Article  CAS  Google Scholar 

  52. Kohn D, Rudert M, Wirth CJ, Plitz W, Reiss G, Maschek H (1997) Medial meniscus replacement by a fat pad autograft. An experimental study in sheep. Int Orthop 21(4):232–238

    Article  PubMed  CAS  Google Scholar 

  53. Bruns J, Kampen J, Kahrs J, Plitz W (2000) Autologous meniscus replacement with rib perichondrium. Experimental results. Orthopade 29(2):145–150

    PubMed  CAS  Google Scholar 

  54. Stabile KJ, Odom D, Smith TL, Northam C, Whitlock PW, Smith BP, Van Dyke ME, Ferguson CM (2010) An acellular, allograft-derived meniscus scaffold in an ovine model. Arthroscopy 26(7):936–948. doi:10.1016/j.arthro.2009.11.024

    Article  PubMed  Google Scholar 

  55. Muller-Rath R, Mumme T, Miltner O, Andereya S, Schneider U (2004) Meniscus replacement: current aspects in the field of tissue engineering. Z Orthop Ihre Grenzgeb 142(5):540–545. doi:10.1055/s-2004-832362

    Article  PubMed  CAS  Google Scholar 

  56. Vangsness CT Jr, Garcia IA, Mills CR, Kainer MA, Roberts MR, Moore TM (2003) Allograft transplantation in the knee: tissue regulation, procurement, processing, and sterilization. Am J Sports Med 31(3):474–481

    PubMed  Google Scholar 

  57. Vangsness CT Jr, Triffon MJ, Joyce MJ, Moore TM (1996) Soft tissue for allograft reconstruction of the human knee: a survey of the American association of tissue banks. Am J Sports Med 24(2):230–234

    Article  PubMed  Google Scholar 

  58. Invasive Streptococcus pyogenes after allograft implantation–Colorado, 2003 (2003). MMWR Morb Mortal Wkly Rep 52 (48):1174–1176

    Google Scholar 

  59. Dienst M, Greis PE, Ellis BJ, Bachus KN, Burks RT (2007) Effect of lateral meniscal allograft sizing on contact mechanics of the lateral tibial plateau: an experimental study in human cadaveric knee joints. Am J Sports Med 35(1):34–42. doi:10.1177/0363546506291404

    Article  PubMed  Google Scholar 

  60. Shaffer B, Kennedy S, Klimkiewicz J, Yao L (2000) Preoperative sizing of meniscal allografts in meniscus transplantation. Am J Sports Med 28(4):524–533

    PubMed  CAS  Google Scholar 

  61. Hamlet W, Liu SH, Yang R (1997) Destruction of a cyropreserved meniscal allograft: a case for acute rejection. Arthroscopy 13(4):517–521

    Article  PubMed  CAS  Google Scholar 

  62. Rodeo SA, Seneviratne A, Suzuki K, Felker K, Wickiewicz TL, Warren RF (2000) Histological analysis of human meniscal allografts. A preliminary report. J Bone Jt Surg Am 82-A(8):1071–1082

    CAS  Google Scholar 

  63. Stollsteimer GT, Shelton WR, Dukes A, Bomboy AL (2000) Meniscal allograft transplantation: a 1- to 5-year follow-up of 22 patients. Arthroscopy 16(4):343–347

    Article  PubMed  CAS  Google Scholar 

  64. Alhalki MM, Hull ML, Howell SM (2000) Contact mechanics of the medial tibial plateau after implantation of a medial meniscal allograft. A human cadaveric study. Am J Sports Med 28(3):370–376

    PubMed  CAS  Google Scholar 

  65. Milachowski KA, Weismeier K, Wirth CJ (1989) Homologous meniscus transplantation. Experimental and clinical results. Int Orthop 13(1):1–11

    Article  PubMed  CAS  Google Scholar 

  66. Aagaard H, Jorgensen U, Bojsen-Moller F (1999) Reduced degenerative articular cartilage changes after meniscal allograft transplantation in sheep. Knee Surg Sports Traumatol Arthrosc 7(3):184–191

    Article  PubMed  CAS  Google Scholar 

  67. Messner K, Lohmander LS, Gillquist J (1993) Cartilage mechanics and morphology, synovitis and proteoglycan fragments in rabbit joint fluid after prosthetic meniscal substitution. Biomaterials 14(3):163–168

    Article  PubMed  CAS  Google Scholar 

  68. Messner K (1994) Meniscal substitution with a Teflon-periosteal composite graft: a rabbit experiment. Biomaterials 15(3):223–230

    Article  PubMed  CAS  Google Scholar 

  69. Kobayashi M, Chang YS, Oka M (2005) A two year in vivo study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. Biomaterials 26(16):3243–3248. doi:10.1016/j.biomaterials.2004.08.028

    Article  PubMed  CAS  Google Scholar 

  70. Verdonk P, Beaufils P, Bellemans J, Djian P, Heinrichs EL, Huysse W, Laprell H, Siebold R, Verdonk R (2012) Successful treatment of painful irreparable partial meniscal defects with a polyurethane scaffold: two-year safety and clinical outcomes. Am J Sports Med 40(4):844–853. doi:10.1177/0363546511433032

    Article  PubMed  Google Scholar 

  71. Agung M, Ochi M, Yanada S, Adachi N, Izuta Y, Yamasaki T, Toda K (2006) Mobilization of bone marrow-derived mesenchymal stem cells into the injured tissues after intraarticular injection and their contribution to tissue regeneration. Knee Surg Sports Traumatol Arthrosc 14(12):1307–1314. doi:10.1007/s00167-006-0124-8

    Article  PubMed  Google Scholar 

  72. Ishida K, Kuroda R, Miwa M, Tabata Y, Hokugo A, Kawamoto T, Sasaki K, Doita M, Kurosaka M (2007) The regenerative effects of platelet-rich plasma on meniscal cells in vitro and its in vivo application with biodegradable gelatin hydrogel. Tissue Eng 13(5):1103–1112. doi:10.1089/ten.2006.0193

    Article  PubMed  CAS  Google Scholar 

  73. Zellner J, Mueller M, Berner A, Dienstknecht T, Kujat R, Nerlich M, Hennemann B, Koller M, Prantl L, Angele M, Angele P (2010) Role of mesenchymal stem cells in tissue engineering of meniscus. J Biomed Mater Res A 94(4):1150–1161. doi:10.1002/jbm.a.32796

    PubMed  Google Scholar 

  74. Sun Y, Feng Y, Zhang CQ, Chen SB, Cheng XG (2010) The regenerative effect of platelet-rich plasma on healing in large osteochondral defects. Int Orthop 34(4):589–597. doi:10.1007/s00264-009-0793-2

    Article  PubMed  CAS  Google Scholar 

  75. Milano G, Sanna Passino E, Deriu L, Careddu G, Manunta L, Manunta A, Saccomanno MF, Fabbriciani C (2010) The effect of platelet rich plasma combined with microfractures on the treatment of chondral defects: an experimental study in a sheep model. Osteoarthritis Cartilage 18(7):971–980. doi:10.1016/j.joca.2010.03.013

    Article  PubMed  CAS  Google Scholar 

  76. Wu W, Zhang J, Dong Q, Liu Y, Mao T, Chen F (2009) Platelet-rich plasma—a promising cell carrier for micro-invasive articular cartilage repair. Med Hypotheses 72(4):455–457. doi:10.1016/j.mehy.2008.11.032

    Article  PubMed  Google Scholar 

  77. Laurencin CT, Khan Y, Kofron M, El-Amin S, Botchwey E, Yu X, Cooper JA Jr (2006) The ABJS Nicolas Andry Award: tissue engineering of bone and ligament: a 15-year perspective. Clin Orthop Relat Res 447:221–236. doi:10.1097/01.blo.0000194677.02506.45

    Article  PubMed  Google Scholar 

  78. Derubeis AR, Cancedda R (2004) Bone marrow stromal cells (BMSCs) in bone engineering: limitations and recent advances. Ann Biomed Eng 32(1):160–165

    Article  PubMed  Google Scholar 

  79. Hoberg M, Uzunmehmetoglu G, Sabic L, Reese S, Aicher WK, Rudert M (2006) Characterisation of human meniscus cells. Z Orthop Ihre Grenzgeb 144(2):172–178. doi:10.1055/s-2006-933364

    Article  PubMed  CAS  Google Scholar 

  80. Hattori H, Sato M, Masuoka K, Ishihara M, Kikuchi T, Matsui T, Takase B, Ishizuka T, Kikuchi M, Fujikawa K (2004) Osteogenic potential of human adipose tissue-derived stromal cells as an alternative stem cell source. Cells Tissues Organs 178(1):2–12. doi:10.1159/000081088

    Article  PubMed  Google Scholar 

  81. Marsano A, Millward-Sadler SJ, Salter DM, Adesida A, Hardingham T, Tognana E, Kon E, Chiari-Grisar C, Nehrer S, Jakob M, Martin I (2007) Differential cartilaginous tissue formation by human synovial membrane, fat pad, meniscus cells and articular chondrocytes. Osteoarthritis Cartilage 15(1):48–58. doi:10.1016/j.joca.2006.06.009

    Article  PubMed  CAS  Google Scholar 

  82. Weinand C, Peretti GM, Adams SB Jr, Bonassar LJ, Randolph MA, Gill TJ (2006) An allogenic cell-based implant for meniscal lesions. Am J Sports Med 34(11):1779–1789. doi:10.1177/0363546506290666

    Article  PubMed  Google Scholar 

  83. Aufderheide AC, Athanasiou KA (2005) Comparison of scaffolds and culture conditions for tissue engineering of the knee meniscus. Tissue Eng 11(7–8):1095–1104. doi:10.1089/ten.2005.11.1095

    Article  PubMed  CAS  Google Scholar 

  84. Kang SW, Son SM, Lee JS, Lee ES, Lee KY, Park SG, Park JH, Kim BS (2006) Regeneration of whole meniscus using meniscal cells and polymer scaffolds in a rabbit total meniscectomy model. J Biomed Mater Res A 78(3):659–671. doi:10.1002/jbm.a.30904

    PubMed  Google Scholar 

  85. Martinek V, Ueblacker P, Braun K, Nitschke S, Mannhardt R, Specht K, Gansbacher B, Imhoff AB (2006) Second generation of meniscus transplantation: in vivo study with tissue engineered meniscus replacement. Arch Orthop Trauma Surg 126(4):228–234. doi:10.1007/s00402-005-0025-1

    Article  PubMed  CAS  Google Scholar 

  86. Mandal BB, Park SH, Gil ES, Kaplan DL (2011) Multilayered silk scaffolds for meniscus tissue engineering. Biomaterials 32(2):639–651. doi:10.1016/j.biomaterials.2010.08.115

    Article  PubMed  CAS  Google Scholar 

  87. Saliken DJ, Mulet-Sierra A, Jomha NM, Adesida AB (2012) Decreased hypertrophic differentiation accompanies enhanced matrix formation in co-cultures of outer meniscus cells with bone marrow mesenchymal stromal cells. Arthritis Res Ther 14(3):R153. doi:10.1186/ar3889

    Article  PubMed  CAS  Google Scholar 

  88. Cui X, Hasegawa A, Lotz M, D’Lima D (2012) Structured three-dimensional co-culture of mesenchymal stem cells with meniscus cells promotes meniscal phenotype without hypertrophy. Biotechnol Bioeng 109(9):2369–2380. doi:10.1002/bit.24495

    Article  PubMed  CAS  Google Scholar 

  89. Matthies NF, Mulet-Sierra A, Jomha NM, Adesida AB (2012) Matrix formation is enhanced in co-cultures of human meniscus cells with bone marrow stromal cells. J Tissue Eng Regen Med. doi:10.1002/term.1489

    PubMed  Google Scholar 

  90. Stewart K, Pabbruwe M, Dickinson S, Sims T, Hollander AP, Chaudhuri JB (2007) The effect of growth factor treatment on meniscal chondrocyte proliferation and differentiation on polyglycolic acid scaffolds. Tissue Eng 13(2):271–280. doi:10.1089/ten.2006.0242

    Article  PubMed  CAS  Google Scholar 

  91. Ionescu LC, Lee GC, Huang KL, Mauck RL (2012) Growth factor supplementation improves native and engineered meniscus repair in vitro. Acta Biomater. doi:10.1016/j.actbio.2012.06.005

    PubMed  Google Scholar 

  92. Tienen TG, Heijkants RG, de Groot JH, Pennings AJ, Schouten AJ, Veth RP, Buma P (2006) Replacement of the knee meniscus by a porous polymer implant: a study in dogs. Am J Sports Med 34(1):64–71. doi:10.1177/0363546505280905

    Article  PubMed  Google Scholar 

  93. Yan LP, Oliveira JM, Oliveira AL, Caridade SG, Mano JF, Reis RL (2012) Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Acta Biomater 8(1):289–301. doi:10.1016/j.actbio.2011.09.037

    Article  PubMed  CAS  Google Scholar 

  94. Gastel JA, Muirhead WR, Lifrak JT, Fadale PD, Hulstyn MJ, Labrador DP (2001) Meniscal tissue regeneration using a collagenous biomaterial derived from porcine small intestine submucosa. Arthroscopy 17(2):151–159. doi:10.1053/jars.2001.20959

    Article  PubMed  CAS  Google Scholar 

  95. Welch JA, Montgomery RD, Lenz SD, Plouhar P, Shelton WR (2002) Evaluation of small-intestinal submucosa implants for repair of meniscal defects in dogs. Am J Vet Res 63(3):427–431

    Article  PubMed  Google Scholar 

  96. Tan Y, Zhang Y, Pei M (2010) Meniscus reconstruction through coculturing meniscus cells with synovium-derived stem cells on small intestine submucosa–a pilot study to engineer meniscus tissue constructs. Tissue Eng Part A 16(1):67–79. doi:10.1089/ten.TEA.2008.0680

    Article  PubMed  CAS  Google Scholar 

  97. Rodkey WG, Steadman JR, Li ST (1999) A clinical study of collagen meniscus implants to restore the injured meniscus. Clin Orthop Relat Res (367 Suppl):S281–292

  98. Steadman JR, Rodkey WG (2005) Tissue-engineered collagen meniscus implants: 5- to 6-year feasibility study results. Arthroscopy 21(5):515–525. doi:10.1016/j.arthro.2005.01.006

    Article  PubMed  Google Scholar 

  99. Stone KR, Steadman JR, Rodkey WG, Li ST (1997) Regeneration of meniscal cartilage with use of a collagen scaffold. Analysis of preliminary data. J Bone Jt Surg Am 79(12):1770–1777

    CAS  Google Scholar 

  100. Zaffagnini S, Giordano G, Vascellari A, Bruni D, Neri MP, Iacono F, Kon E, Presti ML, Marcacci M (2007) Arthroscopic collagen meniscus implant results at 6 to 8 years follow up. Knee Surg Sports Traumatol Arthrosc 15(2):175–183. doi:10.1007/s00167-006-0144-4

    Article  PubMed  Google Scholar 

  101. Reguzzoni M, Manelli A, Ronga M, Raspanti M, Grassi FA (2005) Histology and ultrastructure of a tissue-engineered collagen meniscus before and after implantation. J Biomed Mater Res B Appl Biomater 74(2):808–816. doi:10.1002/jbm.b.30314

    PubMed  Google Scholar 

  102. Pabbruwe MB, Kafienah W, Tarlton JF, Mistry S, Fox DJ, Hollander AP (2010) Repair of meniscal cartilage white zone tears using a stem cell/collagen-scaffold implant. Biomaterials 31(9):2583–2591. doi:10.1016/j.biomaterials.2009.12.023

    Article  PubMed  CAS  Google Scholar 

  103. Buma P, Ramrattan NN, van Tienen TG, Veth RP (2004) Tissue engineering of the meniscus. Biomaterials 25(9):1523–1532

    Article  PubMed  CAS  Google Scholar 

  104. Tienen TG, Heijkants RG, de Groot JH, Schouten AJ, Pennings AJ, Veth RP, Buma P (2006) Meniscal replacement in dogs. Tissue regeneration in two different materials with similar properties. J Biomed Mater Res B Appl Biomater 76(2):389–396. doi:10.1002/jbm.b.30406

    PubMed  CAS  Google Scholar 

  105. Liu C, Abedian R, Meister R, Haasper C, Hurschler C, Krettek C, von Lewinski G, Jagodzinski M (2012) Influence of perfusion and compression on the proliferation and differentiation of bone mesenchymal stromal cells seeded on polyurethane scaffolds. Biomaterials 33(4):1052–1064. doi:10.1016/j.biomaterials.2011.10.041

    Article  PubMed  CAS  Google Scholar 

  106. Mandal BB, Park SH, Gil ES, Kaplan DL Multilayered silk scaffolds for meniscus tissue engineering. Biomaterials 32 (2):639–651. doi:10.1016/j.biomaterials.2010.08.11510.1016/j.biomaterials.2010.08.115

  107. Burke JF (1983) Observations on the development of an artificial skin: presidential address, 1982 American burn association meeting. J Trauma 23(7):543–551

    Article  PubMed  CAS  Google Scholar 

  108. Shakespeare DT, Stokes M, Sherman KP, Young A (1985) Reflex inhibition of the quadriceps after meniscectomy: lack of association with pain. Clin Physiol 5(2):137–144

    Article  PubMed  CAS  Google Scholar 

  109. Silver FH, Pins G (1992) Cell growth on collagen: a review of tissue engineering using scaffolds containing extracellular matrix. J Long Term Eff Med Implants 2(1):67–80

    PubMed  CAS  Google Scholar 

  110. Bhargava MM, Attia ET, Murrell GA, Dolan MM, Warren RF, Hannafin JA (1999) The effect of cytokines on the proliferation and migration of bovine meniscal cells. Am J Sports Med 27(5):636–643

    PubMed  CAS  Google Scholar 

  111. Gunja NJ, Uthamanthil RK, Athanasiou KA (2009) Effects of TGF-beta1 and hydrostatic pressure on meniscus cell-seeded scaffolds. Biomaterials 30(4):565–573. doi:10.1016/j.biomaterials.2008.10.007

    Article  PubMed  CAS  Google Scholar 

  112. Bhargava MM, Hidaka C, Hannafin JA, Doty S, Warren RF (2005) Effects of hepatocyte growth factor and platelet-derived growth factor on the repair of meniscal defects in vitro. In Vitro Cell Dev Biol Anim 41(8–9):305–310. doi:10.1290/0503018.1

    Article  PubMed  CAS  Google Scholar 

  113. Pangborn CA, Athanasiou KA (2005) Effects of growth factors on meniscal fibrochondrocytes. Tissue Eng 11(7–8):1141–1148. doi:10.1089/ten.2005.11.1141

    Article  PubMed  CAS  Google Scholar 

  114. Petersen W, Pufe T, Starke C, Fuchs T, Kopf S, Neumann W, Zantop T, Paletta J, Raschke M, Becker R (2007) The effect of locally applied vascular endothelial growth factor on meniscus healing: gross and histological findings. Arch Orthop Trauma Surg 127(4):235–240. doi:10.1007/s00402-005-0024-2

    Article  PubMed  Google Scholar 

  115. Imler SM, Doshi AN, Levenston ME (2004) Combined effects of growth factors and static mechanical compression on meniscus explant biosynthesis. Osteoarthritis Cartilage 12(9):736–744. doi:10.1016/j.joca.2004.05.007

    Article  PubMed  Google Scholar 

  116. Shin SJ, Fermor B, Weinberg JB, Pisetsky DS, Guilak F (2003) Regulation of matrix turnover in meniscal explants: role of mechanical stress, interleukin-1, and nitric oxide. J Appl Physiol 95(1):308–313. doi:10.1152/japplphysiol.00131.2003

    PubMed  CAS  Google Scholar 

  117. Fermor B, Jeffcoat D, Hennerbichler A, Pisetsky DS, Weinberg JB, Guilak F (2004) The effects of cyclic mechanical strain and tumor necrosis factor alpha on the response of cells of the meniscus. Osteoarthritis Cartilage 12(12):956–962. doi:10.1016/j.joca.2004.08.007

    Article  PubMed  Google Scholar 

  118. Hidaka C, Ibarra C, Hannafin JA, Torzilli PA, Quitoriano M, Jen SS, Warren RF, Crystal RG (2002) Formation of vascularized meniscal tissue by combining gene therapy with tissue engineering. Tissue Eng 8(1):93–105. doi:10.1089/107632702753503090

    Article  PubMed  CAS  Google Scholar 

  119. Goto H, Shuler FD, Niyibizi C, Fu FH, Robbins PD, Evans CH (2000) Gene therapy for meniscal injury: enhanced synthesis of proteoglycan and collagen by meniscal cells transduced with a TGFbeta(1) gene. Osteoarthritis Cartilage 8(4):266–271. doi:10.1053/joca.1999.0300

    Article  PubMed  CAS  Google Scholar 

  120. Fox DB, Warnock JJ, Stoker AM, Luther JK, Cockrell M (2010) Effects of growth factors on equine synovial fibroblasts seeded on synthetic scaffolds for avascular meniscal tissue engineering. Res Vet Sci 88(2):326–332. doi:10.1016/j.rvsc.2009.07.015

    Article  PubMed  CAS  Google Scholar 

  121. Riera KM, Rothfusz NE, Wilusz RE, Weinberg JB, Guilak F, McNulty AL (2011) Interleukin-1, tumor necrosis factor-alpha, and transforming growth factor-beta 1 and integrative meniscal repair: influences on meniscal cell proliferation and migration. Arthritis Res Ther 13(6):R187. doi:10.1186/ar3515

    Article  PubMed  CAS  Google Scholar 

  122. Baker BM, Shah RP, Huang AH, Mauck RL (2011) Dynamic tensile loading improves the functional properties of mesenchymal stem cell-laden nanofiber-based fibrocartilage. Tissue Eng Part A 17(9–10):1445–1455. doi:10.1089/ten.TEA.2010.0535

    Article  PubMed  CAS  Google Scholar 

  123. Pangborn CA, Athanasiou KA (2005) Growth factors and fibrochondrocytes in scaffolds. J Orthop Res 23(5):1184–1190. doi:10.1016/j.orthres.2005.01.019

    Article  PubMed  CAS  Google Scholar 

  124. Huey DJ, Athanasiou KA (2011) Maturational growth of self-assembled, functional menisci as a result of TGF-beta1 and enzymatic chondroitinase-ABC stimulation. Biomaterials 32(8):2052–2058. doi:10.1016/j.biomaterials.2010.11.041

    Article  PubMed  CAS  Google Scholar 

  125. Upton ML, Chen J, Guilak F, Setton LA (2003) Differential effects of static and dynamic compression on meniscal cell gene expression. J Orthop Res 21(6):963–969. doi:10.1016/S0736-0266(03)00063-9

    Article  PubMed  CAS  Google Scholar 

  126. Ballyns JJ, Wright TM, Bonassar LJ (2010) Effect of media mixing on ECM assembly and mechanical properties of anatomically-shaped tissue engineered meniscus. Biomaterials 31(26):6756–6763. doi:10.1016/j.biomaterials.2010.05.039

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This paper has been written entirely by the authors and was supported by “Deutsche Arthrosehilfe” and “Gesellschaft für Orthopädisch-Traumatologische Sportmedizin (GOTS)”. Chaoxu Liu received financial support from the China Scholarship Council (CSC). Ionel Cristian Toma was supported by the Romanian Government and the Trauma Foundation.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoxu Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Toma, I.C., Mastrogiacomo, M. et al. Meniscus reconstruction: today’s achievements and premises for the future. Arch Orthop Trauma Surg 133, 95–109 (2013). https://doi.org/10.1007/s00402-012-1624-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-012-1624-2

Keywords

Navigation