Skip to main content
Log in

Biomechanical comparison of the end plate design of three vertebral body replacement systems

  • Trauma Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Compression fractures at the thoracolumbar junction are frequently treated by reconstruction with vertebral body replacement systems. Modern cage implants have been developed which respect the anatomy and angulation of the adjacent bony endplates. The objective of this study was to investigate the biomechanical performance of anatomic endplate design and variable endplate angulation.

Materials and methods

Three cage systems [Hydrolift (HYL), Aesculap; Synex II (SYN), Synthes; Obelisc (OBC), Ulrich] were compared employing a composite bone substitute material at two levels of endplate angulation (0°, 3°). Their load-bearing capacity was assessed in a physiologic test with human vertebral specimens in a misalignment situation (3°). The HYL and SYN offered anatomically shaped endplates. The endplates of the HYL had variable angulation during insertion and were then mechanically fixated. The OBC had fixed and circular endplates. The load to failure and system stiffness were evaluated by an axial compression test. The bone mineral density (BMD) and the area of the bony endplates were measured via CT.

Results

None of the mechanical properties differed between 0° and 3° for the HYL cage using bone substitute material, while the OBC lost 19% of the failure load (p = 0.001) and 55% of stiffness (p = 0.001) in case of misalignment. In human bone specimens, failure loads were comparable among all implants (p > 0.1) with the HYL showing the largest system stiffness (p < 0.05). Furthermore, a strong correlation between stiffness and BMD (R 2 = 0.82) and failure load and BMD (R 2 = 0.87) was found.

Conclusion

Anatomically shaped and continuously variable endplates provide mechanical advantages under imperfect alignment and may thus reduce secondary dislocation and the loss of correction. This is achieved by retaining an optimal contact area between the implant and the bony endplates. Conventional cage design with circular endplates offer adequate stability in optimal contact situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Reinhold M, Knop C, Beisse R, Audige L, Kandziora F, Pizanis A, Pranzl R, Gercek E, Schultheiss M, Weckbach A, Buhren V, Blauth M (2009) Operative treatment of traumatic fractures of the thoracic and lumbar spinal column. Part I: epidemiology. Unfallchirurg 112:33–35

    Article  PubMed  CAS  Google Scholar 

  2. McLain RF (2006) The biomechanics of long versus short fixation for thoracolumbar spine fractures. Spine (Phila Pa 1976) 31:S70–S79

    Article  Google Scholar 

  3. Been HD, Bouma GJ (1999) Comparison of two types of surgery for thoraco-lumbar burst fractures: combined anterior and posterior stabilisation vs posterior instrumentation only. Acta Neurochir (Wien) 141:349–357

    Article  CAS  Google Scholar 

  4. Bence T, Schreiber U, Grupp T, Steinhauser E, Mittelmeier W (2007) Two column lesions in the thoracolumbar junction: anterior, posterior or combined approach? A comparative biomechanical in vitro investigation. Eur Spine J 16:813–820

    Article  PubMed  Google Scholar 

  5. Merkel P, Hauck S, Zentz F, Buhren V, Beisse R (2008) Spinal column injuries in sport: treatment strategies and clinical results. Unfallchirurg 111:711–718

    Article  PubMed  CAS  Google Scholar 

  6. Reinhold M, Knop C, Beisse R, Audige L, Kandziora F, Pizanis A, Pranzl R, Gercek E, Schultheiss M, Weckbach A, Buhren V, Blauth M (2009) Operative treatment of traumatic fractures of the thoracic and lumbar spinal column: Part III: follow up data. Unfallchirurg 112:294–316

    Article  PubMed  CAS  Google Scholar 

  7. Sasso RC, Renkens K, Hanson D, Reilly T, McGuire RA Jr, Best NM (2006) Unstable thoracolumbar burst fractures: anterior-only versus short-segment posterior fixation. J Spinal Disord Tech 19:242–248

    Article  PubMed  Google Scholar 

  8. Frymoyer JW, Howe J, Kuhlmann D (1978) The long-term effects of spinal fusion on the sacroiliac joints and ilium. Clin Orthop Relat Res 134:196–201

    Google Scholar 

  9. Wippermann BW, Schratt HE, Steeg S, Tscherne H (1997) Complications of spongiosa harvesting of the ilial crest. A retrospective analysis of 1,191 cases. Chirurg 68:1286–1291

    Article  PubMed  CAS  Google Scholar 

  10. Banwart JC, Asher MA, Hassanein RS (1995) Iliac crest bone graft harvest donor site morbidity: a statistical evaluation. Spine (Phila Pa 1976) 20:1055–1060

    Article  CAS  Google Scholar 

  11. Goulet JA, Senunas LE, DeSilva GL, Greenfield ML (1997) Autogenous iliac crest bone graft. Complications and functional assessment. Clin Orthop Relat Res 339:76–81

    Google Scholar 

  12. Huang TJ, Hsu RW, Sum CW, Liu HP (1999) Complications in thoracoscopic spinal surgery: a study of 90 consecutive patients. Surg Endosc 13:346–350

    Article  PubMed  CAS  Google Scholar 

  13. Kandziora F, Pflugmacher R, Schaefer J, Scholz M, Ludwig K, Schleicher P, Haas NP (2003) Biomechanical comparison of expandable cages for vertebral body replacement in the cervical spine. J Neurosurg 99:91–97

    PubMed  Google Scholar 

  14. Karches C, Friedl W (2002) Secondary dislocations after Synex Cage implantation. Unfallchirurg 105:744–747

    Article  PubMed  CAS  Google Scholar 

  15. Reinhold M, Schwieger K, Goldhahn J, Linke B, Knop C, Blauth M (2006) Influence of screw positioning in a new anterior spine fixator on implant loosening in osteoporotic vertebrae. Spine (Phila Pa 1976) 31:406–413

    Article  Google Scholar 

  16. Woiciechowsky C (2005) Distractable vertebral cages for reconstruction after cervical corpectomy. Spine (Phila Pa 1976) 30:1736–1741

    Article  Google Scholar 

  17. Knop C, Lange U, Bastian L, Oeser M, Blauth M (2001) Biomechanical compression tests with a new implant for thoracolumbar vertebral body replacement. Eur Spine J 10:30–37

    Article  PubMed  CAS  Google Scholar 

  18. Reinhold M, Schmolz W, Canto F, Krappinger D, Blauth M, Knop C (2007) An improved vertebral body replacement for the thoracolumbar spine. A biomechanical in vitro test on human lumbar vertebral bodies. Unfallchirurg 110:327–333

    Article  PubMed  CAS  Google Scholar 

  19. Reinhold M, Schmoelz W, Canto F, Krappinger D, Blauth M, Knop C (2009) A new distractable implant for vertebral body replacement: biomechanical testing of four implants for the thoracolumbar spine. Arch Orthop Trauma Surg 129:1375–1382

    Article  PubMed  CAS  Google Scholar 

  20. Hansson T, Roos B, Nachemson A (1980) The bone mineral content and ultimate compressive strength of lumbar vertebrae. Spine (Phila Pa 1976) 5:46–55

    Article  CAS  Google Scholar 

  21. Hansson T, Roos B (1981) The relation between bone mineral content, experimental compression fractures, and disc degeneration in lumbar vertebrae. Spine (Phila Pa 1976) 6:147–153

    Article  CAS  Google Scholar 

  22. Knop C, Lange U, Reinhold M, Blauth M (2005) Vertebral body replacement with Synex in combined posteroanterior surgery for treatment of thoracolumbar injuries. Oper Orthop Traumatol 17:249–280

    Article  PubMed  Google Scholar 

  23. Okuyama K, Sato K, Abe E, Inaba H, Shimada Y, Murai H (1993) Stability of transpedicle screwing for the osteoporotic spine: an in vitro study of the mechanical stability. Spine (Phila Pa 1976) 18:2240–2245

    Article  CAS  Google Scholar 

  24. Sato K, Kikuchi S, Yonezawa T (1999) In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine (Phila Pa 1976) 24:2468–2474

    Article  CAS  Google Scholar 

  25. Adams MA, Dolan P (2005) Spine biomechanics. J Biomech 38:1972–1983

    Article  PubMed  Google Scholar 

  26. Grant JP, Oxland TR, Dvorak MF (2001) Mapping the structural properties of the lumbosacral vertebral endplates. Spine (Phila Pa 1976) 26:889–896

    Article  CAS  Google Scholar 

  27. Hulme PA, Boyd SK, Ferguson SJ (2007) Regional variation in vertebral bone morphology and its contribution to vertebral fracture strength. Bone 41:946–957

    Article  PubMed  CAS  Google Scholar 

  28. Zhao FD, Pollintine P, Hole BD, Adams MA, Dolan P (2009) Vertebral fractures usually affect the cranial endplate because it is thinner and supported by less-dense trabecular bone. Bone 44:372–379

    Article  PubMed  Google Scholar 

  29. Wilke HJ, Neef P, Caimi M, Hoogland T, Claes LE (1999) New in vivo measurements of pressures in the intervertebral disc in daily life. Spine (Phila Pa 1976) 24:755–762

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The companies Braun/Aesculap AG & Co. KG (Tuttlingen, Germany), Ulrich Medizintechnik (Ulm, Germany) and Synthes (Oberndorf, Switzerland) provided the implants for this study. Braun/Aesculap provided financial support for the study. C. Schilling and R. Schultz are employees of Braun/Aesculap.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Penzkofer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penzkofer, R., Hofberger, S., Spiegl, U. et al. Biomechanical comparison of the end plate design of three vertebral body replacement systems. Arch Orthop Trauma Surg 131, 1253–1259 (2011). https://doi.org/10.1007/s00402-011-1284-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-011-1284-7

Keywords

Navigation