Skip to main content

Advertisement

Log in

An update on the central nervous system manifestations of Li–Fraumeni syndrome

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Li–Fraumeni syndrome (LFS), caused by the germline mutations in the TP53 gene, leads to significant lifetime risk to cancer in the central nervous system. Recognition of LFS, and elucidating its underlying cause has had a remarkable effect on our knowledge of the biology of brain tumors and represents a significant opportunity for cancer surveillance and screening. In this review, we discuss the historical context of the LFS with an emphasis on the clinicopathologic implications in clincal diagnosis, germline testing, and clinical management of brain tumor patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alsner J, Jensen V, Kyndi M, Offersen BV, Vu P, Borresen-Dale AL et al (2008) A comparison between p53 accumulation determined by immunohistochemistry and TP53 mutations as prognostic variables in tumours from breast cancer patients. Acta Oncol 47:600–607. https://doi.org/10.1080/02841860802047411

    Article  CAS  PubMed  Google Scholar 

  2. Amary MF, Damato S, Halai D, Eskandarpour M, Berisha F, Bonar F et al (2011) Ollier disease and Maffucci syndrome are caused by somatic mosaic mutations of IDH1 and IDH2. Nat Genet 43:1262–1265. https://doi.org/10.1038/ng.994

    Article  CAS  PubMed  Google Scholar 

  3. Bahar M, Kordes U, Tekautz T, Wolff J (2015) Radiation therapy for choroid plexus carcinoma patients with Li–Fraumeni syndrome: advantageous or detrimental? Anticancer Res 35:3013–3017

    PubMed  Google Scholar 

  4. Baker SJ, Fearon ER, Nigro JM, Hamilton SR, Preisinger AC, Jessup JM et al (1989) Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244:217–221

    Article  CAS  PubMed  Google Scholar 

  5. Bargonetti J, Reynisdottir I, Friedman PN, Prives C (1992) Site-specific binding of wild-type p53 to cellular DNA is inhibited by SV40 T antigen and mutant p53. Genes Dev 6:1886–1898

    Article  CAS  PubMed  Google Scholar 

  6. Bazrafshani MR, Nowshadi PA, Shirian S, Daneshbod Y, Nabipour F, Mokhtari M et al (2016) Deletion/duplication mutation screening of TP53 gene in patients with transitional cell carcinoma of urinary bladder using multiplex ligation-dependent probe amplification. Cancer Med 5:145–152. https://doi.org/10.1002/cam4.561

    Article  CAS  PubMed  Google Scholar 

  7. Bell DW, Varley JM, Szydlo TE, Kang DH, Wahrer DC, Shannon KE et al (1999) Heterozygous germ line hCHK2 mutations in Li–Fraumeni syndrome. Science 286:2528–2531

    Article  CAS  PubMed  Google Scholar 

  8. Birch JM, Hartley AL, Tricker KJ, Prosser J, Condie A, Kelsey AM et al (1994) Prevalence and diversity of constitutional mutations in the p53 gene among 21 Li–Fraumeni families. Cancer Res 54:1298–1304

    CAS  PubMed  Google Scholar 

  9. Blattner WA, McGuire DB, Mulvihill JJ, Lampkin BC, Hananian J, Fraumeni JF (1979) Genealogy of cancer in a family. JAMA 241:259–261

    Article  CAS  PubMed  Google Scholar 

  10. Bond GL, Hirshfield KM, Kirchhoff T, Alexe G, Bond EE, Robins H et al (2006) MDM2 SNP309 accelerates tumor formation in a gender-specific and hormone-dependent manner. Cancer Res 66:5104–5110. https://doi.org/10.1158/0008-5472.CAN-06-0180

    Article  CAS  PubMed  Google Scholar 

  11. Bond GL, Hu W, Bond EE, Robins H, Lutzker SG, Arva NC et al (2004) A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119:591–602. https://doi.org/10.1016/j.cell.2004.11.022

    Article  CAS  PubMed  Google Scholar 

  12. Bosari S, Marchetti A, Buttitta F, Graziani D, Borsani G, Loda M et al (1995) Detection of p53 mutations by single-strand conformation polymorphisms (SSCP) gel electrophoresis. A comparative study of radioactive and nonradioactive silver-stained SSCP analysis. Diagn Mol Pathol 4:249–255

    Article  CAS  PubMed  Google Scholar 

  13. Bouaoun L, Sonkin D, Ardin M, Hollstein M, Byrnes G, Zavadil J et al (2016) TP53 variations in human cancers: new lessons from the IARC TP53 database and genomics data. Hum Mutat 37:865–876. https://doi.org/10.1002/humu.23035

    Article  CAS  PubMed  Google Scholar 

  14. Bougeard G, Renaux-Petel M, Flaman JM, Charbonnier C, Fermey P, Belotti M et al (2015) Revisiting Li–Fraumeni syndrome from TP53 mutation carriers. J Clin Oncol 33:2345–2352. https://doi.org/10.1200/JCO.2014.59.5728

    Article  CAS  PubMed  Google Scholar 

  15. Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR et al (2013) The somatic genomic landscape of glioblastoma. Cell 155:462–477. https://doi.org/10.1016/j.cell.2013.09.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bullock AN, Henckel J, Fersht AR (2000) Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: definition of mutant states for rescue in cancer therapy. Oncogene 19:1245–1256. https://doi.org/10.1038/sj.onc.1203434

    Article  CAS  PubMed  Google Scholar 

  17. Cancer Genome Atlas Research N, Brat DJ, Verhaak RG, Aldape KD, Yung WK, Salama SR et al (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372:2481–2498. https://doi.org/10.1056/nejmoa1402121

    Article  Google Scholar 

  18. Chakravarty D, Gao J, Phillips SM, Kundra R, Zhang H, Wang J et al (2017) OncoKB: a precision oncology knowledge base. JCO Precis Oncol. https://doi.org/10.1200/po.17.00011

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chen X, Farmer G, Zhu H, Prywes R, Prives C (1993) Cooperative DNA binding of p53 with TFIID (TBP): a possible mechanism for transcriptional activation. Genes Dev 7:1837–1849

    Article  CAS  PubMed  Google Scholar 

  20. Chompret A, Abel A, Stoppa-Lyonnet D, Brugieres L, Pages S, Feunteun J et al (2001) Sensitivity and predictive value of criteria for p53 germline mutation screening. J Med Genet 38:43–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dawson R, Muller L, Dehner A, Klein C, Kessler H, Buchner J (2003) The N-terminal domain of p53 is natively unfolded. J Mol Biol 332:1131–1141

    Article  CAS  PubMed  Google Scholar 

  22. de Andrade KC, Mirabello L, Stewart DR, Karlins E, Koster R, Wang M et al (2017) Higher-than-expected population prevalence of potentially pathogenic germline TP53 variants in individuals unselected for cancer history. Hum Mutat 38:1723–1730. https://doi.org/10.1002/humu.23320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS et al (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221. https://doi.org/10.1038/356215a0

    Article  CAS  PubMed  Google Scholar 

  24. Dumont P, Leu JI, Della Pietra AC III, George DL, Murphy M (2003) The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet 33:357–365. https://doi.org/10.1038/ng1093

    Article  CAS  PubMed  Google Scholar 

  25. Eberhart CG, Kepner JL, Goldthwaite PT, Kun LE, Duffner PK, Friedman HS et al (2002) Histopathologic grading of medulloblastomas: a Pediatric Oncology Group study. Cancer 94:552–560. https://doi.org/10.1002/cncr.10189

    Article  PubMed  Google Scholar 

  26. Eeles RA (1995) Germline mutations in the TP53 gene. Cancer Surv 25:101–124

    CAS  PubMed  Google Scholar 

  27. El-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B (1992) Definition of a consensus binding site for p53. Nat Genet 1:45–49. https://doi.org/10.1038/ng0492-45

    Article  CAS  PubMed  Google Scholar 

  28. Ellison DW, Kocak M, Dalton J, Megahed H, Lusher ME, Ryan SL et al (2011) Definition of disease-risk stratification groups in childhood medulloblastoma using combined clinical, pathologic, and molecular variables. J Clin Oncol 29:1400–1407. https://doi.org/10.1200/JCO.2010.30.2810

    Article  PubMed  Google Scholar 

  29. Felley-Bosco E, Weston A, Cawley HM, Bennett WP, Harris CC (1993) Functional studies of a germ-line polymorphism at codon 47 within the p53 gene. Am J Hum Genet 53:752–759

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Fields S, Jang SK (1990) Presence of a potent transcription activating sequence in the p53 protein. Science 249:1046–1049

    Article  CAS  PubMed  Google Scholar 

  31. Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate J et al (2017) COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res 45:D777–D783. https://doi.org/10.1093/nar/gkw1121

    Article  CAS  PubMed  Google Scholar 

  32. Frebourg T, Barbier N, Yan YX, Garber JE, Dreyfus M, Fraumeni J Jr et al (1995) Germ-line p53 mutations in 15 families with Li–Fraumeni syndrome. Am J Hum Genet 56:608–615

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Garber JE, Burke EM, Lavally BL, Billett AL, Sallan SE, Scott RM et al (1990) Choroid plexus tumors in the breast cancer-sarcoma syndrome. Cancer 66:2658–2660

    Article  CAS  PubMed  Google Scholar 

  34. Gemignani F, Moreno V, Landi S, Moullan N, Chabrier A, Gutierrez-Enriquez S et al (2004) A TP53 polymorphism is associated with increased risk of colorectal cancer and with reduced levels of TP53 mRNA. Oncogene 23:1954–1956. https://doi.org/10.1038/sj.onc.1207305

    Article  CAS  PubMed  Google Scholar 

  35. Ghosh R, Oak N, Plon SE (2017) Evaluation of in silico algorithms for use with ACMG/AMP clinical variant interpretation guidelines. Genome Biol 18:225. https://doi.org/10.1186/s13059-017-1353-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Giangaspero F, Perilongo G, Fondelli MP, Brisigotti M, Carollo C, Burnelli R et al (1999) Medulloblastoma with extensive nodularity: a variant with favorable prognosis. J Neurosurg 91:971–977. https://doi.org/10.3171/jns.1999.91.6.0971

    Article  CAS  PubMed  Google Scholar 

  37. Gillet E, Alentorn A, Doukoure B, Mundwiller E, van Thuijl HF, Reijneveld JC et al (2014) TP53 and p53 statuses and their clinical impact in diffuse low grade gliomas. J Neurooncol 118:131–139. https://doi.org/10.1007/s11060-014-1407-4

    Article  CAS  PubMed  Google Scholar 

  38. Gonzalez KD, Noltner KA, Buzin CH, Gu D, Wen-Fong CY, Nguyen VQ et al (2009) Beyond Li Fraumeni syndrome: clinical characteristics of families with p53 germline mutations. J Clin Oncol 27:1250–1256. https://doi.org/10.1200/JCO.2008.16.6959

    Article  CAS  PubMed  Google Scholar 

  39. Hayes J, Yu Y, Jalbert LE, Mazor T, Jones LE, Wood MD et al (2018) Genomic analysis of the origins and evolution of multicentric diffuse lower-grade gliomas. Neuro Oncol 20:632–641. https://doi.org/10.1093/neuonc/nox205

    Article  CAS  PubMed  Google Scholar 

  40. Hu B, Gilkes DM, Chen J (2007) Efficient p53 activation and apoptosis by simultaneous disruption of binding to MDM2 and MDMX. Cancer Res 67:8810–8817. https://doi.org/10.1158/0008-5472.CAN-07-1140

    Article  CAS  PubMed  Google Scholar 

  41. Hwang SJ, Lozano G, Amos CI, Strong LC (2003) Germline p53 mutations in a cohort with childhood sarcoma: sex differences in cancer risk. Am J Hum Genet 72:975–983. https://doi.org/10.1086/374567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jennis M, Kung CP, Basu S, Budina-Kolomets A, Leu JI, Khaku S et al (2016) An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model. Genes Dev 30:918–930. https://doi.org/10.1101/gad.275891.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Joerger AC, Fersht AR (2008) Structural biology of the tumor suppressor p53. Annu Rev Biochem 77:557–582. https://doi.org/10.1146/annurev.biochem.77.060806.091238

    Article  CAS  PubMed  Google Scholar 

  44. Jones C, Baker SJ (2014) Unique genetic and epigenetic mechanisms driving paediatric diffuse high-grade glioma. Nat Rev Cancer. https://doi.org/10.1038/nrc3811

    Article  PubMed  PubMed Central  Google Scholar 

  45. Jones DT, Jager N, Kool M, Zichner T, Hutter B, Sultan M et al (2012) Dissecting the genomic complexity underlying medulloblastoma. Nature 488:100–105. https://doi.org/10.1038/nature11284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q et al (2019) Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. bioRxiv. https://doi.org/10.1101/531210

    Article  Google Scholar 

  47. Kastenhuber ER, Lowe SW (2017) Putting p53 in context. Cell 170:1062–1078. https://doi.org/10.1016/j.cell.2017.08.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kato S, Han SY, Liu W, Otsuka K, Shibata H, Kanamaru R et al (2003) Understanding the function–structure and function–mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci USA 100:8424–8429. https://doi.org/10.1073/pnas.1431692100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kleihues P, Schauble B, Zur Hausen A, Esteve J, Ohgaki H (1997) Tumors associated with p53 germline mutations: a synopsis of 91 families. Am J Pathol 150:1–13

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kool M, Jones DT, Jager N, Northcott PA, Pugh TJ, Hovestadt V et al (2014) Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell 25:393–405. https://doi.org/10.1016/j.ccr.2014.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kratz CP, Achatz MI, Brugieres L, Frebourg T, Garber JE, Greer MC et al (2017) Cancer screening recommendations for individuals with Li–Fraumeni syndrome. Clin Cancer Res 23:e38–e45. https://doi.org/10.1158/1078-0432.CCR-17-0408

    Article  CAS  PubMed  Google Scholar 

  52. Krutilkova V, Trkova M, Fleitz J, Gregor V, Novotna K, Krepelova A et al (2005) Identification of five new families strengthens the link between childhood choroid plexus carcinoma and germline TP53 mutations. Eur J Cancer 41:1597–1603. https://doi.org/10.1016/j.ejca.2005.01.026

    Article  CAS  PubMed  Google Scholar 

  53. Kung CP, Leu JI, Basu S, Khaku S, Anokye-Danso F, Liu Q et al (2016) The P72R polymorphism of p53 predisposes to obesity and metabolic dysfunction. Cell Rep 14:2413–2425. https://doi.org/10.1016/j.celrep.2016.02.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kutach LS, Bolshakov S, Ananthaswamy HN (1999) Detection of mutations and polymorphisms in the p53 tumor suppressor gene by single-strand conformation polymorphism analysis. Electrophoresis 20:1204–1210. https://doi.org/10.1002/(SICI)1522-2683(19990101)20:6%3c1204:AID-ELPS1204%3e3.0.CO;2-S

    Article  CAS  PubMed  Google Scholar 

  55. Lalloo F, Varley J, Ellis D, Moran A, O’Dair L, Pharoah P et al (2003) Prediction of pathogenic mutations in patients with early-onset breast cancer by family history. Lancet 361:1101–1102. https://doi.org/10.1016/S0140-6736(03)12856-5

    Article  CAS  PubMed  Google Scholar 

  56. Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S et al (2018) ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res 46:D1062–D1067. https://doi.org/10.1093/nar/gkx1153

    Article  CAS  PubMed  Google Scholar 

  57. Lavigueur A, Maltby V, Mock D, Rossant J, Pawson T, Bernstein A (1989) High incidence of lung, bone, and lymphoid tumors in transgenic mice overexpressing mutant alleles of the p53 oncogene. Mol Cell Biol 9:3982–3991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285–291. https://doi.org/10.1038/nature19057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Leroy B, Ballinger ML, Baran-Marszak F, Bond GL, Braithwaite A, Concin N et al (2017) Recommended guidelines for validation, quality control, and reporting of TP53 variants in clinical practice. Cancer Res 77:1250–1260. https://doi.org/10.1158/0008-5472.CAN-16-2179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Levine AJ, Oren M (2009) The first 30 years of p53: growing ever more complex. Nat Rev Cancer 9:749–758. https://doi.org/10.1038/nrc2723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li FP, Fraumeni JF Jr (1969) Rhabdomyosarcoma in children: epidemiologic study and identification of a familial cancer syndrome. J Natl Cancer Inst 43:1365–1373

    CAS  PubMed  Google Scholar 

  62. Li FP, Fraumeni JF Jr (1969) Soft-tissue sarcomas, breast cancer, and other neoplasms. A familial syndrome? Ann Intern Med 71:747–752

    Article  CAS  PubMed  Google Scholar 

  63. Li FP, Fraumeni JF Jr, Mulvihill JJ, Blattner WA, Dreyfus MG, Tucker MA et al (1988) A cancer family syndrome in twenty-four kindreds. Cancer Res 48:5358–5362

    CAS  PubMed  Google Scholar 

  64. Li MM, Datto M, Duncavage EJ, Kulkarni S, Lindeman NI, Roy S et al (2017) Standards and guidelines for the interpretation and reporting of sequence variants in cancer: a joint consensus recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn 19:4–23. https://doi.org/10.1016/j.jmoldx.2016.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Linzer DI, Maltzman W, Levine AJ (1979) The SV40 A gene product is required for the production of a 54,000 MW cellular tumor antigen. Virology 98:308–318

    Article  CAS  PubMed  Google Scholar 

  66. Liu Y, Chen C, Xu Z, Scuoppo C, Rillahan CD, Gao J et al (2016) Deletions linked to TP53 loss drive cancer through p53-independent mechanisms. Nature 531:471–475. https://doi.org/10.1038/nature17157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK et al (2016) The 2016 World Health Organization Classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  68. Mackay A, Burford A, Carvalho D, Izquierdo E, Fazal-Salom J, Taylor KR et al (2017) Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell 32(520–537):e525. https://doi.org/10.1016/j.ccell.2017.08.017

    Article  CAS  Google Scholar 

  69. Malkin D, Li FP, Strong LC, Fraumeni JF Jr, Nelson CE, Kim DH et al (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250:1233–1238

    Article  CAS  PubMed  Google Scholar 

  70. Mangerel J, Price A, Castelo-Branco P, Brzezinski J, Buczkowicz P, Rakopoulos P et al (2014) Alternative lengthening of telomeres is enriched in, and impacts survival of TP53 mutant pediatric malignant brain tumors. Acta Neuropathol 128:853–862. https://doi.org/10.1007/s00401-014-1348-1

    Article  CAS  PubMed  Google Scholar 

  71. Merino DM, Shlien A, Villani A, Pienkowska M, Mack S, Ramaswamy V et al (2015) Molecular characterization of choroid plexus tumors reveals novel clinically relevant subgroups. Clin Cancer Res 21:184–192. https://doi.org/10.1158/1078-0432.CCR-14-1324

    Article  CAS  PubMed  Google Scholar 

  72. Mitchell G, Ballinger ML, Wong S, Hewitt C, James P, Young MA et al (2013) High frequency of germline TP53 mutations in a prospective adult-onset sarcoma cohort. PLoS One 8:e69026. https://doi.org/10.1371/journal.pone.0069026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. National Comprehensive Cancer Network. Genetic/familial high-risk assessment: breast and ovarian. Version 3.2019. https://www.nccn.org/professionals/physician_gls/pdf/genetics_screening.pdf. Accessed 18 Jan 2019

  74. Northcott PA, Buchhalter I, Morrissy AS, Hovestadt V, Weischenfeldt J, Ehrenberger T et al (2017) The whole-genome landscape of medulloblastoma subtypes. Nature 547:311–317. https://doi.org/10.1038/nature22973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Northcott PA, Robinson GW, Kratz CP, Mabbott DJ, Pomeroy SL, Clifford SC et al (2019) Medulloblastoma. Nat Rev Dis Primers 5:11. https://doi.org/10.1038/s41572-019-0063-6

    Article  PubMed  Google Scholar 

  76. Olivier M, Goldgar DE, Sodha N, Ohgaki H, Kleihues P, Hainaut P et al (2003) Li–Fraumeni and related syndromes: correlation between tumor type, family structure, and TP53 genotype. Cancer Res 63:6643–6650

    CAS  PubMed  Google Scholar 

  77. Olivier M, Hollstein M, Hainaut P (2010) TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2:a001008. https://doi.org/10.1101/cshperspect.a001008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pansuriya TC, van Eijk R, d’Adamo P, van Ruler MA, Kuijjer ML, Oosting J et al (2011) Somatic mosaic IDH1 and IDH2 mutations are associated with enchondroma and spindle cell hemangioma in Ollier disease and Maffucci syndrome. Nat Genet 43:1256–1261. https://doi.org/10.1038/ng.1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pearson AD, Craft AW, Ratcliffe JM, Birch JM, Morris-Jones P, Roberts DF (1982) Two families with the Li–Fraumeni cancer family syndrome. J Med Genet 19:362–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P et al (2007) Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 28:622–629. https://doi.org/10.1002/humu.20495

    Article  CAS  PubMed  Google Scholar 

  81. Pfaff E, Remke M, Sturm D, Benner A, Witt H, Milde T et al (2010) TP53 mutation is frequently associated with CTNNB1 mutation or MYCN amplification and is compatible with long-term survival in medulloblastoma. J Clin Oncol 28:5188–5196. https://doi.org/10.1200/JCO.2010.31.1670

    Article  CAS  PubMed  Google Scholar 

  82. Pfeifer GP, Denissenko MF, Olivier M, Tretyakova N, Hecht SS, Hainaut P (2002) Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene 21:7435–7451. https://doi.org/10.1038/sj.onc.1205803

    Article  CAS  PubMed  Google Scholar 

  83. Pollack IF, Finkelstein SD, Woods J, Burnham J, Holmes EJ, Hamilton RL et al (2002) Expression of p53 and prognosis in children with malignant gliomas. N Engl J Med 346:420–427. https://doi.org/10.1056/NEJMoa012224

    Article  CAS  PubMed  Google Scholar 

  84. Pugh TJ, Weeraratne SD, Archer TC, Pomeranz Krummel DA, Auclair D, Bochicchio J et al (2012) Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature 488:106–110. https://doi.org/10.1038/nature11329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ramaswamy V, Remke M, Bouffet E, Bailey S, Clifford SC, Doz F et al (2016) Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. Acta Neuropathol 131:821–831. https://doi.org/10.1007/s00401-016-1569-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rausch T, Jones DT, Zapatka M, Stutz AM, Zichner T, Weischenfeldt J et al (2012) Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148:59–71. https://doi.org/10.1016/j.cell.2011.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ribi S, Baumhoer D, Lee K, Edison Teo AS, Madan B et al (2015) TP53 intron 1 hotspot rearrangements are specific to sporadic osteosarcoma and can cause Li–Fraumeni syndrome. Oncotarget 6:7727–7740. https://doi.org/10.18632/oncotarget.3115

    Article  PubMed  PubMed Central  Google Scholar 

  88. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–424. https://doi.org/10.1038/gim.2015.30

    Article  PubMed  PubMed Central  Google Scholar 

  89. Robinson G, Parker M, Kranenburg TA, Lu C, Chen X, Ding L et al (2012) Novel mutations target distinct subgroups of medulloblastoma. Nature 488:43–48. https://doi.org/10.1038/nature11213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Robinson GW, Orr BA, Wu G, Gururangan S, Lin T, Qaddoumi I et al (2015) Vismodegib exerts targeted efficacy against recurrent sonic hedgehog-subgroup medulloblastoma: results from phase II pediatric brain tumor consortium studies PBTC-025B and PBTC-032. J Clin Oncol 33:2646–2654. https://doi.org/10.1200/JCO.2014.60.1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Robles AI, Harris CC (2010) Clinical outcomes and correlates of TP53 mutations and cancer. Cold Spring Harb Perspect Biol 2:a001016. https://doi.org/10.1101/cshperspect.a001016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Schneider K, Zelley K, Nichols KE, Garber J (1993) Li–Fraumeni syndrome. In: Adam MP, Ardinger HH, Pagon RA et al (eds) GeneReviews((R)). University of Washington, Seattle, Seattle (WA)

    Google Scholar 

  93. Schwalbe EC, Lindsey JC, Nakjang S, Crosier S, Smith AJ, Hicks D et al (2017) Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study. Lancet Oncol 18:958–971. https://doi.org/10.1016/S1470-2045(17)30243-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM et al (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29:308–311. https://doi.org/10.1093/nar/29.1.308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shi D, Gu W (2012) Dual roles of MDM2 in the regulation of p53: ubiquitination dependent and ubiquitination independent mechanisms of MDM2 repression of p53 activity. Genes Cancer 3:240–248. https://doi.org/10.1177/1947601912455199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29. https://doi.org/10.3322/caac.20138

    Article  PubMed  Google Scholar 

  97. Sjalander A, Birgander R, Saha N, Beckman L, Beckman G (1996) p53 polymorphisms and haplotypes show distinct differences between major ethnic groups. Hum Hered 46:41–48. https://doi.org/10.1159/000154324

    Article  CAS  PubMed  Google Scholar 

  98. Smoll NR, Drummond KJ (2012) The incidence of medulloblastomas and primitive neurectodermal tumours in adults and children. J Clin Neurosci 19:1541–1544. https://doi.org/10.1016/j.jocn.2012.04.009

    Article  PubMed  Google Scholar 

  99. Sorrell AD, Espenschied CR, Culver JO, Weitzel JN (2013) Tumor protein p53 (TP53) testing and Li–Fraumeni syndrome: current status of clinical applications and future directions. Mol Diagn Ther 17:31–47. https://doi.org/10.1007/s40291-013-0020-0

    Article  PubMed  PubMed Central  Google Scholar 

  100. Soussi T, Beroud C (2001) Assessing TP53 status in human tumours to evaluate clinical outcome. Nat Rev Cancer 1:233–240. https://doi.org/10.1038/35106009

    Article  CAS  PubMed  Google Scholar 

  101. Strong LC, Williams WR, Ferrell RE, Tainsky MA (1989) Genetic analysis of childhood sarcoma. Princess Takamatsu Symp 20:151–157

    CAS  PubMed  Google Scholar 

  102. Sturm D, Orr BA, Toprak UH, Hovestadt V, Jones DTW, Capper D et al (2016) New brain tumor entities emerge from molecular classification of CNS-PNETs. Cell 164:1060–1072. https://doi.org/10.1016/j.cell.2016.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tabori U, Baskin B, Shago M, Alon N, Taylor MD, Ray PN et al (2010) Universal poor survival in children with medulloblastoma harboring somatic TP53 mutations. J Clin Oncol 28:1345–1350. https://doi.org/10.1200/JCO.2009.23.5952

    Article  CAS  PubMed  Google Scholar 

  104. Tabori U, Shlien A, Baskin B, Levitt S, Ray P, Alon N et al (2010) TP53 alterations determine clinical subgroups and survival of patients with choroid plexus tumors. J Clin Oncol 28:1995–2001. https://doi.org/10.1200/JCO.2009.26.8169

    Article  CAS  PubMed  Google Scholar 

  105. Takami H, Yoshida A, Fukushima S, Arita H, Matsushita Y, Nakamura T et al (2015) Revisiting TP53 mutations and immunohistochemistry—a comparative study in 157 diffuse gliomas. Brain Pathol 25:256–265. https://doi.org/10.1111/bpa.12173

    Article  CAS  PubMed  Google Scholar 

  106. Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, Clifford SC et al (2012) Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 123:465–472. https://doi.org/10.1007/s00401-011-0922-z

    Article  CAS  PubMed  Google Scholar 

  107. The Genomes Project C, Auton A, Abecasis GR, Altshuler DM, Durbin RM, Abecasis GR et al (2015) A global reference for human genetic variation. Nature 526:68. https://doi.org/10.1038/nature15393. https://www.nature.com/articles/nature15393#supplementary-information

  108. Thomas M, Kalita A, Labrecque S, Pim D, Banks L, Matlashewski G (1999) Two polymorphic variants of wild-type p53 differ biochemically and biologically. Mol Cell Biol 19:1092–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Vahteristo P, Tamminen A, Karvinen P, Eerola H, Eklund C, Aaltonen LA et al (2001) p53, CHK2, and CHK1 genes in Finnish families with Li–Fraumeni syndrome: further evidence of CHK2 in inherited cancer predisposition. Cancer Res 61:5718–5722

    CAS  PubMed  Google Scholar 

  110. Varley JM (2003) Germline TP53 mutations and Li–Fraumeni syndrome. Hum Mutat 21:313–320. https://doi.org/10.1002/humu.10185

    Article  CAS  PubMed  Google Scholar 

  111. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110. https://doi.org/10.1016/j.ccr.2009.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Villani A, Shore A, Wasserman JD, Stephens D, Kim RH, Druker H et al (2016) Biochemical and imaging surveillance in germline TP53 mutation carriers with Li–Fraumeni syndrome: 11 year follow-up of a prospective observational study. Lancet Oncol 17:1295–1305. https://doi.org/10.1016/S1470-2045(16)30249-2

    Article  CAS  PubMed  Google Scholar 

  113. Villani A, Tabori U, Schiffman J, Shlien A, Beyene J, Druker H et al (2011) Biochemical and imaging surveillance in germline TP53 mutation carriers with Li–Fraumeni syndrome: a prospective observational study. Lancet Oncol 12:559–567. https://doi.org/10.1016/S1470-2045(11)70119-X

    Article  CAS  PubMed  Google Scholar 

  114. Vital A, Bringuier PP, Huang H, San Galli F, Rivel J, Ansoborlo S et al (1998) Astrocytomas and choroid plexus tumors in two families with identical p53 germline mutations. J Neuropathol Exp Neurol 57:1061–1069

    Article  CAS  PubMed  Google Scholar 

  115. Walker KK, Levine AJ (1996) Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc Natl Acad Sci USA 93:15335–15340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Waszak SM, Northcott PA, Buchhalter I, Robinson GW, Sutter C, Groebner S et al (2018) Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. Lancet Oncol 19:785–798. https://doi.org/10.1016/S1470-2045(18)30242-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Watanabe T, Vital A, Nobusawa S, Kleihues P, Ohgaki H (2009) Selective acquisition of IDH1 R132C mutations in astrocytomas associated with Li–Fraumeni syndrome. Acta Neuropathol 117:653–656. https://doi.org/10.1007/s00401-009-0528-x

    Article  CAS  PubMed  Google Scholar 

  118. Weitzel JN, Chao EC, Nehoray B, Van Tongeren LR, LaDuca H, Blazer KR et al (2018) Somatic TP53 variants frequently confound germ-line testing results. Genet Med 20:809–816. https://doi.org/10.1038/gim.2017.196

    Article  CAS  PubMed  Google Scholar 

  119. Whibley C, Pharoah PD, Hollstein M (2009) p53 polymorphisms: cancer implications. Nat Rev Cancer 9:95–107. https://doi.org/10.1038/nrc2584

    Article  CAS  PubMed  Google Scholar 

  120. Wu CC, Shete S, Amos CI, Strong LC (2006) Joint effects of germ-line p53 mutation and sex on cancer risk in Li–Fraumeni syndrome. Cancer Res 66:8287–8292. https://doi.org/10.1158/0008-5472.CAN-05-4247

    Article  CAS  PubMed  Google Scholar 

  121. Wu D, Zhang Z, Chu H, Xu M, Xue Y, Zhu H et al (2013) Intron 3 sixteen base pairs duplication polymorphism of p53 contributes to breast cancer susceptibility: evidence from meta-analysis. PLoS One 8:e61662. https://doi.org/10.1371/journal.pone.0061662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhukova N, Ramaswamy V, Remke M, Pfaff E, Shih DJ, Martin DC et al (2013) Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. J Clin Oncol 31:2927–2935. https://doi.org/10.1200/JCO.2012.48.5052

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thank you to Angela McArthur Ph.D. for helpful review of the manuscript. Thank you to David Solomon M.D, Ph.D for selected case images.

Funding

This work is partially supported by NIH Grant P30 CA021765 to the St. Jude Children’s Research Hospital Comprehensive Cancer Center (PI: C. Roberts) and the American Lebanese Syrian Associated Charities (ALSAC).

Author information

Authors and Affiliations

Authors

Contributions

BAO, MRC, EMP, CK co-wrote the manuscript.

Corresponding author

Correspondence to Brent A. Orr.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orr, B.A., Clay, M.R., Pinto, E.M. et al. An update on the central nervous system manifestations of Li–Fraumeni syndrome. Acta Neuropathol 139, 669–687 (2020). https://doi.org/10.1007/s00401-019-02055-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-019-02055-3

Keywords

Navigation