Skip to main content
Log in

Gliomatosis cerebri in children shares molecular characteristics with other pediatric gliomas

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Gliomatosis cerebri (GC), a rare and deadly CNS neoplasm characterized by involvement of at least three cerebral lobes, predominantly affects adults. While a few small series have reported its occurrence in children, little is known about the molecular characteristics of pediatric GC. We reviewed clinical, radiological, and histological features of pediatric patients with primary GC treated at our institution over 15 years. Targeted sequencing of mutational hotspots in H3F3A, IDH1/2, and BRAF, and genome-wide analysis of DNA methylation and copy number abnormalities was performed in available tumors. Thirty-two patients [23 (72 %) with type 1 and 9 (28 %) with type 2 GC] were identified. Median age at diagnosis was 10.2 years (range 1.5–19.1). A median of 4 cerebral lobes (range 3–8) was affected at diagnosis. In addition, symmetrical bithalamic involvement was observed in 9 (28 %) patients. Twenty-two patients (69 %) had an anaplastic astrocytoma. Despite aggressive therapy, only two patients younger than 3 years at diagnosis are long-term survivors. Clustering analysis of methylation array data from 18 cases classified tumors as IDH (n = 3, 17 %), G34 (n = 4, 22 %), mesenchymal (n = 3, 17 %), and RTK I ‘PDGFRA’ (n = 8, 44 %). No tumors were classified as K27 subgroup. PDGFRA was the most commonly amplified oncogene in 4 of 22 tumors (18 %). H3F3A p.G34 occurred in all cases classified as G34. Two of 3 cases in the IDH subgroup had IDH1 p.R132H. No H3F3A p.K27 M, IDH2 p.R172, or BRAF p.V600E mutations were observed. There was a trend towards improved survival in the IDH subgroup (P = 0.056). Patients with bithalamic involvement had worse outcomes (P = 0.019). Despite some overlap, the molecular features of pediatric GC are distinct from its adult counterpart. Like in adults, the similarity of genetic and epigenetic characteristics with other infiltrative high-grade gliomas suggests that pediatric GC does not represent a distinct molecular entity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Armstrong GT, Phillips PC, Rorke-Adams LB, Judkins AR, Localio AR, Fisher MJ (2006) Gliomatosis cerebri: 20 years of experience at the Children’s Hospital of Philadelphia. Cancer 107:1597–1606. doi:10.1002/cncr.22210

    Article  PubMed  Google Scholar 

  2. Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, Irizarry RA (2014) Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 30:1363–1369. doi:10.1093/bioinformatics/btu049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bady P, Sciuscio D, Diserens AC et al (2012) MGMT methylation analysis of glioblastoma on the Infinium methylation BeadChip identifies two distinct CpG regions associated with gene silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and CIMP-status. Acta Neuropathol 124:547–560. doi:10.1007/s00401-012-1016-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Broniscer A, Tatevossian RG, Sabin ND, Klimo P Jr, Dalton J, Lee R, Gajjar A, Ellison DW (2014) Clinical, radiological, histological and molecular characteristics of paediatric epithelioid glioblastoma. Neuropathol Appl Neurobiol 40:327–336. doi:10.1111/nan.12093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chappé C, Riffaud L, Tréguier C et al (2013) Primary gliomatosis cerebri involving gray matter in pediatrics: a distinct entity? A multicenter study of 14 cases. Childs Nerv Syst 29:565–571. doi:10.1007/s00381-012-2016-1

    Article  PubMed  Google Scholar 

  6. Colosimo C, di Lella GM, Tartaglione T, Riccardi R (2002) Neuroimaging of thalamic tumors in children. Childs Nerv Syst 18:426–439. doi:10.1007/s00381-002-0607-y

    Article  PubMed  Google Scholar 

  7. D’Urso OF, D’Urso PI, Marsigliante S, Storelli C, Luzi G, Gianfreda CD, Montinaro A, Distante A, Ciappetta P (2009) Correlative analysis of gene expression profile and prognosis in patients with gliomatosis cerebri. Cancer 115:3749–3757. doi:10.1002/cncr.24435

    Article  PubMed  Google Scholar 

  8. Fuller GN, Kros JM (2007) Gliomatosis cerebri. In: Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds) WHO classification of tumours of the central nervous system, 4th edn. IARC, Lyon, pp 50–52

    Google Scholar 

  9. George E, Settler A, Connors S, Greenfield JP (2015) Pediatric gliomatosis cerebri: a review of 15 Years. J Child Neurol. doi:10.1177/0883073815596612

  10. Hartmann C, Meyer J, Balss J et al (2009) Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol 118:469–474. doi:10.1007/s00401-009-0561-9

    Article  PubMed  Google Scholar 

  11. Herrlinger U, Felsberg J, Küker W et al (2002) Gliomatosis cerebri: molecular pathology and clinical course. Ann Neurol 52:390–399. doi:10.1002/ana.10297

    Article  CAS  PubMed  Google Scholar 

  12. Herrlinger U, Jones DT, Glas M et al (2015) Gliomatosis cerebri: no evidence for a separate brain tumor entity. Acta Neuropathol. doi:10.1007/s00401-015-1495-z (in press)

  13. Hovestadt V, Zapatka M. conumee: enhanced copy-number variation analysis using Illumina 450 k methylation arrays. R package version 0.99.4. In: Bioconductor: open source software for bioinformatics. http://www.bioconductor.org/packages/release/bioc/html/conumee.html. Accessed 1 Sept 2015

  14. Jackson S, Patay Z, Howarth R, Pai Panandiker AS, Onar-Thomas A, Gajjar A, Broniscer A (2013) Clinico-radiologic characteristics of long-term survivors of diffuse intrinsic pontine glioma. J Neurooncol 114:339–344. doi:10.1007/s11060-013-1189-0

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jennings MT, Frenchman M, Shehab T, Johnson MD, Creasy J, LaPorte K, Dettbarn WD (1995) Gliomatosis cerebri presenting as intractable epilepsy during early childhood. J Child Neurol 10:37–45. doi:10.1177/088307389501000111

    Article  CAS  PubMed  Google Scholar 

  16. Korshunov A, Ryzhova M, Hovestadt V et al (2015) Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathol 129:669–678. doi:10.1007/s00401-015-1405-4

    Article  CAS  PubMed  Google Scholar 

  17. Kwon MJ, Kim ST, Kwon MJ et al (2012) Mutated IDH1 is a favorable prognostic factor for type 2 gliomatosis cerebri. Brain Pathol 22:307–317. doi:10.1111/j.1750-3639.2011.00532

    Article  CAS  PubMed  Google Scholar 

  18. Lee X, Gao M, Ji Y, Yu Y, Feng Y, Li Y, Zhang Y, Cheng W, Zhao W (2009) Analysis of differential BRAF(V600E) mutational status in high aggressive papillary thyroid microcarcinoma. Ann Surg Oncol 16:240–245. doi:10.1245/s10434-008-0233-3

    Article  PubMed  Google Scholar 

  19. Min HS, Kim B, Park SH (2008) Array-based comparative genomic hybridization and immunohistochemical studies in gliomatosis cerebri. J Neurooncol 90:259–266. doi:10.1007/s11060-008-9665-7

    Article  PubMed  Google Scholar 

  20. Monty S, Tamayo P, Mesirov J, Golub T (2003) Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. Mach Learn 52:91–118

    Article  Google Scholar 

  21. Narasimhaiah D, Miquel C, Verhamme E, Desclée P, Cosnard G, Godfraind C (2012) IDH1 mutation, a genetic alteration associated with adult gliomatosis cerebri. Neuropathology 32:30–37. doi:10.1111/j.1440-1789.2011.01216.x

    Article  PubMed  Google Scholar 

  22. Perkins GH, Schomer DF, Fuller GN, Allen PK, Maor MH (2003) Gliomatosis cerebri: improved outcome with radiotherapy. Int J Radiat Oncol Biol Phys 56:1137–1146. doi:10.1016/S0360-3016(03)00293-1

    Article  PubMed  Google Scholar 

  23. R Core Team (2015). R: a language and environment for statistical computing. In: R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 1 Sept 2015

  24. Schwartzentruber J, Korshunov A, Liu XY et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482:226–231. doi:10.1038/nature10833

    Article  CAS  PubMed  Google Scholar 

  25. Seiz M, Tuettenberg J, Meyer J, Essig M, Schmieder K, Mawrin C, von Deimling A, Hartmann C (2010) Detection of IDH1 mutations in gliomatosis cerebri, but only in patients with additional solid component: evidence for molecular subtypes. Acta Neuropathol 120:261–267. doi:10.1007/s00401-010-0701-2

    Article  CAS  PubMed  Google Scholar 

  26. Sturm D, Witt H, Hovestadt V et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22:425–437. doi:10.1016/j.ccr.2012.08.024

    Article  CAS  PubMed  Google Scholar 

  27. Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, Botstein D, Altman RB (2001) Missing value estimation methods for DNA microarrays. Bioinformatics 17:520–525. doi:10.1093/bioinformatics/17.6.520

    Article  CAS  PubMed  Google Scholar 

  28. Ware ML, Hirose Y, Scheithauer BW, Yeh RF, Mayo MC, Smith JS, Chang S, Cha S, Tihan T, Feuerstein BG (2007) Genetic aberrations in gliomatosis cerebri. Neurosurgery 60:150–158. doi:10.1227/01.NEU.0000249203.73849.5D

    Article  PubMed  Google Scholar 

  29. Wu G, Broniscer A, McEachron TA, St. Jude Children’s Research Hospital-Washington University Pediatric Cancer Genome Project et al (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44:251–253. doi:10.1038/ng.1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu G, Diaz AK, Paugh BS, St. Jude Children’s Research Hospital-Washington University Pediatric Cancer Genome Project et al (2014) The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 46:444–450. doi:10.1038/ng.2938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang J, Wu G, Miller CP, St. Jude Children’s Research Hospital-Washington University Pediatric Cancer Genome Project et al (2013) Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet 45:602–612. doi:10.1038/ng.2611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the United States National Institutes of Health Cancer Center Support (CORE) Grant P30 CA21765 and by the American Lebanese Syrian Associated Charities (ALSAC). We thank Geoffrey Neale and John Morris for assistance in performing the methylation studies. We thank Racquel Collins for her assistance in performing targeted sequencing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Broniscer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

401_2015_1532_MOESM1_ESM.pdf

Supplemental Fig 1 Distribution of large areas of chromosomal gains or losses according to the methylation subgroup. Red and blue rectangles represent areas of chromosomal gains and losses, respectively. Abbreviation: MES, mesenchymal (PDF 164 kb)

401_2015_1532_MOESM2_ESM.pdf

Supplemental Fig 2 Overall survival of 30 pediatric patients with gliomatosis cerebri and histologically confirmed pure astrocytomas based on their tumor grade (PDF 901 kb)

401_2015_1532_MOESM3_ESM.pdf

Supplemental Fig 3 Overall survival of 32 pediatric patients with gliomatosis cerebri based on the presence of contrast enhancement (PDF 897 kb)

Supplemental Fig 4 Overall survival of type 1 vs. type 2 gliomatosis cerebri in 32 patients (PDF 898 kb)

401_2015_1532_MOESM5_ESM.pdf

Supplemental Fig 5 Overall survival of 18 pediatric patients with gliomatosis cerebri based on MGMT promoter methylation (PDF 900 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Broniscer, A., Chamdine, O., Hwang, S. et al. Gliomatosis cerebri in children shares molecular characteristics with other pediatric gliomas. Acta Neuropathol 131, 299–307 (2016). https://doi.org/10.1007/s00401-015-1532-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-015-1532-y

Keywords

Navigation