Skip to main content

Advertisement

Log in

Diffusely infiltrating astrocytomas: pathology, molecular mechanisms and markers

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Diffusely infiltrating astrocytomas include diffuse astrocytomas WHO grade II and anaplastic astrocytomas WHO grade III and are classified under astrocytic tumours according to the current WHO Classification. Although the patients generally have longer survival as compared to those with glioblastoma, the timing of inevitable malignant progression ultimately determines the prognosis. Recent advances in molecular genetics have uncovered that histopathologically diagnosed astrocytomas may consist of two genetically different groups of tumours. The majority of diffusely infiltrating astrocytomas regardless of WHO grade have concurrent mutations of IDH1 or IDH2, TP53 and ATRX. Among these astrocytomas, no other genetic markers that may distinguish grade II and grade III tumours have been identified. Those astrocytomas without IDH mutation tend to have a distinct genotype and a poor prognosis comparable to that of glioblastomas. On the other hand, diffuse astrocytomas that arise in children do not harbour IDH/TP53 mutations, but instead display mutations of BRAF or structural alterations involving MYB/MYBL1 or FGFR1. A molecular classification may thus help delineate diffusely infiltrating astrocytomas into distinct pathogenic and prognostic groups, which could aid in determining individualised therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abedalthagafi M, Phillips JJ, Kim GE et al (2013) The alternative lengthening of telomere phenotype is significantly associated with loss of ATRX expression in high-grade pediatric and adult astrocytomas: a multi-institutional study of 214 astrocytomas. Mod Pathol 26:1425–1432

    CAS  PubMed  Google Scholar 

  2. Aghili M, Zahedi F, Rafiee E (2009) Hydroxyglutaric aciduria and malignant brain tumor: a case report and literature review. J Neurooncol 91:233–236

    PubMed  Google Scholar 

  3. Ahmadi R, Stockhammer F, Becker N et al (2012) No prognostic value of IDH1 mutations in a series of 100 WHO grade II astrocytomas. J Neurooncol 109:15–22

    CAS  PubMed  Google Scholar 

  4. Arita H, Narita Y, Fukushima S et al (2013) Upregulating mutations in the TERT promoter commonly occur in adult malignant gliomas and are strongly associated with total 1p19q loss. Acta Neuropathol 126:267–276

    CAS  PubMed  Google Scholar 

  5. Arita H, Narita Y, Matsushita Y et al (2015) Development of a robust and sensitive pyrosequencing assay for the detection of IDH1/2 mutations in gliomas. Brain Tumor Pathol 32:22–30

    CAS  PubMed  Google Scholar 

  6. Arita H, Narita Y, Yoshida A, Hashimoto N, Yoshimine T, Ichimura K (2014) IDH1/2 mutation detection in gliomas. Brain Tumor Pathol [Epub ahead of print]

  7. Asari S, Makabe T, Katayama S, Itoh T, Tsuchida S, Ohmoto T (1994) Assessment of the pathological grade of astrocytic gliomas using an MRI score. Neuroradiology 36:308–310

    CAS  PubMed  Google Scholar 

  8. Bauman G, Fisher B, Watling C, Cairncross JG, Macdonald D (2009) Adult supratentorial low-grade glioma: long-term experience at a single institution. Int J Radiat Oncol Biol Phys 75:1401–1407

    PubMed  Google Scholar 

  9. Bechet D, Gielen GG, Korshunov A et al (2014) Specific detection of methionine 27 mutation in histone 3 variants (H3K27M) in fixed tissue from high-grade astrocytomas. Acta Neuropathol 128:733–741

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Bleeker FE, Atai NA, Lamba S et al (2010) The prognostic IDH1(R132) mutation is associated with reduced NADP+-dependent IDH activity in glioblastoma. Acta Neuropathol 119:487–494

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Bogler O, Huang HJ, Kleihues P, Cavenee WK (1995) The p53 gene and its role in human brain tumors. Glia 15:308–327

    CAS  PubMed  Google Scholar 

  12. Boisselier B, Marie Y, Labussiere M et al (2010) COLD PCR HRM: a highly sensitive detection method for IDH1 mutations. Hum Mutat 31:1360–1365

    CAS  PubMed  Google Scholar 

  13. Bondy ML, Scheurer ME, Malmer B et al (2008) Brain tumor epidemiology: consensus from the Brain Tumor Epidemiology Consortium. Cancer 113:1953–1968

    PubMed Central  PubMed  Google Scholar 

  14. Braganza MZ, Rajaraman P, Park Y et al (2014) Cigarette smoking, alcohol intake, and risk of glioma in the NIH-AARP Diet and Health Study. Br J Cancer 110:242–248

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Brandes AA, Nicolardi L, Tosoni A et al (2006) Survival following adjuvant PCV or temozolomide for anaplastic astrocytoma. Neuro Oncol 8:253–260

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Brennan CW, Verhaak RG, McKenna A et al (2013) The somatic genomic landscape of glioblastoma. Cell 155:462–477

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Brown PD, Buckner JC, O’Fallon JR et al (2003) Effects of radiotherapy on cognitive function in patients with low-grade glioma measured by the folstein mini-mental state examination. J Clin Oncol 21:2519–2524

    PubMed  Google Scholar 

  18. The Committee of Brain Tumor Registry of Japan (2014) Report of Brain Tumor Registry of Japan (2001–2004) 13th edition. Neurol Med Chir (Tokyo) 54:1–102

    Google Scholar 

  19. Buckner JC, Pugh SL, Shaw EG et al (2014) Phase III study of radiation therapy (RT) with or without procarbazine, CCNU, and vincristine (PCV) in low-grade glioma: RTOG 9802 with Alliance, ECOG, and SWOG. J Clin Oncol 2014 ASCO Annu Meet Abstr 32:2000

  20. Buczkowicz P, Bartels U, Bouffet E, Becher O, Hawkins C (2014) Histopathological spectrum of paediatric diffuse intrinsic pontine glioma: diagnostic and therapeutic implications. Acta Neuropathol 128:573–581

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Cairncross G, Wang M, Shaw E et al (2013) Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol 31:337–343

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Canoll P, Goldman JE (2008) The interface between glial progenitors and gliomas. Acta Neuropathol 116:465–477

    PubMed Central  PubMed  Google Scholar 

  23. Capper D, Sahm F, Hartmann C, Meyermann R, von Deimling A, Schittenhelm J (2010) Application of mutant IDH1 antibody to differentiate diffuse glioma from nonneoplastic central nervous system lesions and therapy-induced changes. Am J Surg Pathol 34:1199–1204

    PubMed  Google Scholar 

  24. Capper D, Zentgraf H, Balss J, Hartmann C, von Deimling A (2009) Monoclonal antibody specific for IDH1 R132H mutation. Acta Neuropathol 118:599–601

    CAS  PubMed  Google Scholar 

  25. Cerami E, Gao J, Dogrusoz U et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404

    PubMed  Google Scholar 

  26. Chaichana KL, McGirt MJ, Laterra J, Olivi A, Quinones-Hinojosa A (2010) Recurrence and malignant degeneration after resection of adult hemispheric low-grade gliomas. J Neurosurg 112:10–17

    PubMed  Google Scholar 

  27. Cheung NK, Zhang J, Lu C et al (2012) Association of age at diagnosis and genetic mutations in patients with neuroblastoma. JAMA 307:1062–1071

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Conomos D, Pickett HA, Reddel RR (2013) Alternative lengthening of telomeres: remodeling the telomere architecture. Front Oncol 3:27

    PubMed Central  PubMed  Google Scholar 

  29. Daikhin Y, Yudkoff M (2000) Compartmentation of brain glutamate metabolism in neurons and glia. J Nutr 130:1026S–1031S

    CAS  PubMed  Google Scholar 

  30. Dang L, White DW, Gross S et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–744

    PubMed Central  CAS  PubMed  Google Scholar 

  31. de Tayrac M, Aubry M, Saikali S et al (2011) A 4-gene signature associated with clinical outcome in high-grade gliomas. Clin Cancer Res 17:317–327

    PubMed  Google Scholar 

  32. Dubbink HJ, Taal W, van Marion R et al (2009) IDH1 mutations in low-grade astrocytomas predict survival but not response to temozolomide. Neurology 73:1792–1795

    CAS  PubMed  Google Scholar 

  33. Felsberg J, Wolter M, Seul H et al (2010) Rapid and sensitive assessment of the IDH1 and IDH2 mutation status in cerebral gliomas based on DNA pyrosequencing. Acta Neuropathol 119:501–507

    CAS  PubMed  Google Scholar 

  34. Figueroa ME, Abdel-Wahab O, Lu C et al (2010) Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18:553–567

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Fisher BJ, Lui J, Macdonald DR et al (2013) A phase II study of a temozolomide-based chemoradiotherapy regimen for high-risk low-grade gliomas: preliminary results of RTOG 0424. J Clin Oncol 31:abstract 2008

  36. Gao J, Aksoy BA, Dogrusoz U et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6:pl1

  37. Gibbons R (2006) Alpha thalassaemia-mental retardation, X linked. Orphanet J Rare Dis 1:15

    PubMed Central  PubMed  Google Scholar 

  38. Gibbons RJ, Picketts DJ, Villard L, Higgs DR (1995) Mutations in a putative global transcriptional regulator cause X-linked mental retardation with alpha-thalassemia (ATR-X syndrome). Cell 80:837–845

    CAS  PubMed  Google Scholar 

  39. Gillet E, Alentorn A, Doukoure B et al (2014) TP53 and p53 statuses and their clinical impact in diffuse low grade gliomas. J Neurooncol 118:131–139

    CAS  PubMed  Google Scholar 

  40. Guan X, Vengoechea J, Zheng S et al (2014) Molecular subtypes of glioblastoma are relevant to lower grade glioma. PLoS One 9:e91216

    PubMed Central  PubMed  Google Scholar 

  41. Gupta R, Flanagan S, Li CC et al (2013) Expanding the spectrum of IDH1 mutations in gliomas. Mod Pathol 26:619–625

    CAS  PubMed  Google Scholar 

  42. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    CAS  PubMed  Google Scholar 

  43. Hartmann C, Hentschel B, Tatagiba M et al (2011) Molecular markers in low-grade gliomas: predictive or prognostic? Clin Cancer Res 17:4588–4599

    CAS  PubMed  Google Scholar 

  44. Hartmann C, Hentschel B, Wick W et al (2010) Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol 120:707–718

    PubMed  Google Scholar 

  45. Hartmann C, Meyer J, Balss J et al (2009) Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol 118:469–474

    PubMed  Google Scholar 

  46. Heaphy CM, de Wilde RF, Jiao Y et al (2011) Altered telomeres in tumors with ATRX and DAXX mutations. Science 333:425

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Horbinski C (2013) What do we know about IDH1/2 mutations so far, and how do we use it? Acta Neuropathol 125:621–636

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Horbinski C, Kelly L, Nikiforov YE, Durso MB, Nikiforova MN (2010) Detection of IDH1 and IDH2 mutations by fluorescence melting curve analysis as a diagnostic tool for brain biopsies. J Mol Diagn 12:487–492

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Horn S, Figl A, Rachakonda PS et al (2013) TERT promoter mutations in familial and sporadic melanoma. Science 339:959–961

    CAS  PubMed  Google Scholar 

  50. Houillier C, Wang X, Kaloshi G et al (2010) IDH1 or IDH2 mutations predict longer survival and response to temozolomide in low-grade gliomas. Neurology 75:1560–1566

    CAS  PubMed  Google Scholar 

  51. Huang FW, Hodis E, Xu MJ, Kryukov GV, Chin L, Garraway LA (2013) Highly recurrent TERT promoter mutations in human melanoma. Science 339:957–959

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Hughes LA, Melotte V, de Schrijver J et al (2013) The CpG island methylator phenotype: what’s in a name? Cancer Res 73:5858–5868

    CAS  PubMed  Google Scholar 

  53. Ichimura K, Pearson DM, Kocialkowski S et al (2009) IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas. Neuro Oncol 11:341–347

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Ihle MA, Fassunke J, Konig K et al (2014) Comparison of high resolution melting analysis, pyrosequencing, next generation sequencing and immunohistochemistry to conventional Sanger sequencing for the detection of p. V600E and non-p.V600E BRAF mutations. BMC Cancer 14:13

    PubMed Central  PubMed  Google Scholar 

  55. Jaeckle KA, Decker PA, Ballman KV et al (2011) Transformation of low grade glioma and correlation with outcome: an NCCTG database analysis. J Neurooncol 104:253–259

    CAS  PubMed  Google Scholar 

  56. Jakola AS, Myrmel KS, Kloster R et al (2012) Comparison of a strategy favoring early surgical resection vs a strategy favoring watchful waiting in low-grade gliomas. JAMA 308:1–8

    Google Scholar 

  57. James CD, Carlbom E, Nordenskjold M, Collins VP, Cavenee WK (1989) Mitotic recombination of chromosome 17 in astrocytomas. Proc Natl Acad Sci USA 86:2858–2862

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Jiao Y, Killela PJ, Reitman ZJ et al (2012) Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas. Oncotarget 3:709–722

    PubMed Central  PubMed  Google Scholar 

  59. Jiao Y, Shi C, Edil BH et al (2011) DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 331:1199–1203

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Johnson BE, Mazor T, Hong C et al (2014) Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343:189–193

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Kannan K, Inagaki A, Silber J et al (2012) Whole-exome sequencing identifies ATRX mutation as a key molecular determinant in lower-grade glioma. Oncotarget 3:1194–1203

    PubMed Central  PubMed  Google Scholar 

  62. Karim AB, Maat B, Hatlevoll R et al (1996) A randomized trial on dose-response in radiation therapy of low-grade cerebral glioma: European Organization for Research and Treatment of Cancer (EORTC) Study 22844. Int J Radiat Oncol Biol Phys 36:549–556

    CAS  PubMed  Google Scholar 

  63. Kato Y (2015) Specific monoclonal antibodies against IDH1/2 mutations as diagnostic tools for gliomas. Brain Tumor Pathol 32:3–11

    CAS  PubMed  Google Scholar 

  64. Kato Y, Jin G, Kuan CT, McLendon RE, Yan H, Bigner DD (2009) A monoclonal antibody IMab-1 specifically recognizes IDH1R132H, the most common glioma-derived mutation. Biochem Biophys Res Commun 390:547–551

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Khuong-Quang DA, Buczkowicz P, Rakopoulos P et al (2012) K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 124:439–447

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Killela PJ, Pirozzi CJ, Healy P et al (2014) Mutations in IDH1, IDH2, and in the TERT promoter define clinically distinct subgroups of adult malignant gliomas. Oncotarget 5:1515–1525

    PubMed Central  PubMed  Google Scholar 

  67. Killela PJ, Pirozzi CJ, Reitman ZJ et al (2014) The genetic landscape of anaplastic astrocytoma. Oncotarget 5:1452–1457

    PubMed Central  PubMed  Google Scholar 

  68. Killela PJ, Reitman ZJ, Jiao Y et al (2013) TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci USA 110:6021–6026

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Kim SY, Park JW (2003) Cellular defense against singlet oxygen-induced oxidative damage by cytosolic NADP+-dependent isocitrate dehydrogenase. Free Radic Res 37:309–316

    CAS  PubMed  Google Scholar 

  70. Kim YH, Nobusawa S, Mittelbronn M et al (2010) Molecular classification of low-grade diffuse gliomas. Am J Pathol 177:2708–2714

    PubMed Central  PubMed  Google Scholar 

  71. Kizilbash SH, Giannini C, Voss JS et al (2014) The impact of concurrent temozolomide with adjuvant radiation and IDH mutation status among patients with anaplastic astrocytoma. J Neurooncol 120:85–93

    CAS  PubMed  Google Scholar 

  72. Koelsche C, Sahm F, Capper D et al (2013) Distribution of TERT promoter mutations in pediatric and adult tumors of the nervous system. Acta Neuropathol 126:907–915

    CAS  PubMed  Google Scholar 

  73. Kranendijk M, Struys EA, van Schaftingen E et al (2010) IDH2 mutations in patients with d-2-hydroxyglutaric aciduria. Science 330:336

    CAS  PubMed  Google Scholar 

  74. Lee SM, Koh HJ, Park DC, Song BJ, Huh TL, Park JW (2002) Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic Biol Med 32:1185–1196

    CAS  PubMed  Google Scholar 

  75. Lewis PW, Elsaesser SJ, Noh KM, Stadler SC, Allis CD (2010) Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc Natl Acad Sci USA 107:14075–14080

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Lewis PW, Muller MM, Koletsky MS et al (2013) Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340:857–861

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Lindberg N, Jiang Y, Xie Y et al (2014) Oncogenic signaling is dominant to cell of origin and dictates astrocytic or oligodendroglial tumor development from oligodendrocyte precursor cells. J Neurosci 34:14644–14651

    PubMed  Google Scholar 

  78. Liu XY, Gerges N, Korshunov A et al (2012) Frequent ATRX mutations and loss of expression in adult diffuse astrocytic tumors carrying IDH1/IDH2 and TP53 mutations. Acta Neuropathol 124:615–625

    CAS  PubMed  Google Scholar 

  79. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (2007) WHO classification of tumours of the central nervous system, 4th edn. International agency for research on cancer, Lyon

    Google Scholar 

  80. Louis DN, Perry A, Burger P et al (2014) International society of neuropathology-haarlem consensus guidelines, for nervous system tumor classification and grading. Brain Pathol

  81. Lovejoy CA, Li W, Reisenweber S et al (2012) Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway. PLoS Genet 8:e1002772

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Lu C, Ward PS, Kapoor GS et al (2012) IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483:474–478

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Luchman HA, Stechishin OD, Dang NH et al (2012) An in vivo patient-derived model of endogenous IDH1-mutant glioma. Neuro Oncol 14:184–191

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Mangerel J, Price A, Castelo-Branco P et al (2014) Alternative lengthening of telomeres is enriched in, and impacts survival of TP53 mutant pediatric malignant brain tumors. Acta Neuropathol 128:853–862

    CAS  PubMed  Google Scholar 

  85. Marcucci G, Maharry K, Wu YZ et al (2010) IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 28:2348–2355

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Matar E, Cook RJ, Fowler AR et al (2010) Post-contrast enhancement as a clinical indicator of prognosis in patients with anaplastic astrocytoma. J Clin Neurosci 17:993–996

    PubMed  Google Scholar 

  87. Metellus P, Coulibaly B, Colin C et al (2010) Absence of IDH mutation identifies a novel radiologic and molecular subtype of WHO grade II gliomas with dismal prognosis. Acta Neuropathol 120:719–729

    PubMed  Google Scholar 

  88. Mistry M, Zhukova N, Merico D et al (2015) BRAF mutation and CDKN2A deletion define a clinically distinct subgroup of childhood secondary high-grade glioma. J Clin Oncol 33:1015–1022

    CAS  PubMed  Google Scholar 

  89. MRC TMRCBTWP (2001) Randomized trial of procarbazine, lomustine, and vincristine in the adjuvant treatment of high-grade astrocytoma: a medical research council trial. J Clin Oncol 19:509–518

    Google Scholar 

  90. Mukasa A, Takayanagi S, Saito K et al (2012) Significance of IDH mutations varies with tumor histology, grade, and genetics in Japanese glioma patients. Cancer Sci 103:587–592

    CAS  PubMed  Google Scholar 

  91. Muller PA, Vousden KH (2013) p53 mutations in cancer. Nat Cell Biol 15:2–8

    CAS  PubMed  Google Scholar 

  92. Mur P, Mollejo M, Ruano Y et al (2013) Codeletion of 1p and 19q determines distinct gene methylation and expression profiles in IDH-mutated oligodendroglial tumors. Acta Neuropathol 126:277–289

    CAS  PubMed  Google Scholar 

  93. Narita Y (2013) Current knowledge and treatment strategies for grade II gliomas. Neurol Med Chir (Tokyo) 53:429–437

    Google Scholar 

  94. Narita Y, Shibui S (2015) Trends and outcomes in the treatment of gliomas based on data during 2001–2004 from the Brain Tumor Registry of Japan. Neurol Med Chir (Tokyo)

  95. Noble M, Dietrich J (2004) The complex identity of brain tumors: emerging concerns regarding origin, diversity and plasticity. Trends Neurosci 27:148–154

    CAS  PubMed  Google Scholar 

  96. Noushmehr H, Weisenberger DJ, Diefes K et al (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17:510–522

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Ohgaki H, Kleihues P (2005) Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 64:479–489

    CAS  PubMed  Google Scholar 

  98. Ohka F, Ito M, Ranjit M et al (2014) Quantitative metabolome analysis profiles activation of glutaminolysis in glioma with IDH1 mutation. Tumour Biol 35:5911–5920

    CAS  PubMed  Google Scholar 

  99. Olar A, Wani KM, Alfaro-Munoz KD et al (2015) IDH mutation status and role of WHO grade and mitotic index in overall survival in grade II-III diffuse gliomas. Acta Neuropathol [Epub ahead of print]

  100. Ostrom QT, Gittleman H, Liao P et al (2014) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol 16(Suppl 4):iv1–iv63

  101. Pallud J, Capelle L, Taillandier L et al (2009) Prognostic significance of imaging contrast enhancement for WHO grade II gliomas. Neuro Oncol 11:176–182

    PubMed Central  PubMed  Google Scholar 

  102. Pallud J, Fontaine D, Duffau H et al (2010) Natural history of incidental World Health Organization grade II gliomas. Ann Neurol 68:727–733

    PubMed  Google Scholar 

  103. Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Patay Z, Orr BA, Shulkin BL et al (2014) Successive distinct high-grade gliomas in l-2-hydroxyglutaric aciduria. J Inherit Metab Dis 38:273–277

    PubMed  Google Scholar 

  105. Petalidis LP, Oulas A, Backlund M et al (2008) Improved grading and survival prediction of human astrocytic brain tumors by artificial neural network analysis of gene expression microarray data. Mol Cancer Ther 7:1013–1024

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P, Olivier M (2007) TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26:2157–2165

    CAS  PubMed  Google Scholar 

  107. Petitjean A, Mathe E, Kato S et al (2007) Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 28:622–629

    CAS  PubMed  Google Scholar 

  108. Phillips HS, Kharbanda S, Chen R et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173

    CAS  PubMed  Google Scholar 

  109. Pollack IF, Hamilton RL, Sobol RW et al (2011) IDH1 mutations are common in malignant gliomas arising in adolescents: a report from the Children’s Oncology Group. Childs Nerv Syst 27:87–94

    PubMed Central  PubMed  Google Scholar 

  110. Potts MB, Smith JS, Molinaro AM, Berger MS (2012) Natural history and surgical management of incidentally discovered low-grade gliomas. J Neurosurg 116:365–372

    PubMed  Google Scholar 

  111. Ramkissoon LA, Horowitz PM, Craig JM et al (2013) Genomic analysis of diffuse pediatric low-grade gliomas identifies recurrent oncogenic truncating rearrangements in the transcription factor MYBL1. Proc Natl Acad Sci USA 110:8188–8193

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Reitman ZJ, Jin G, Karoly ED et al (2011) Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome. Proc Natl Acad Sci USA 108:3270–3275

    PubMed Central  CAS  PubMed  Google Scholar 

  113. Reitman ZJ, Sinenko SA, Spana EP, Yan H (2015) Genetic dissection of leukemia-associated IDH1 and IDH2 mutants and d-2-hydroxyglutarate in Drosophila. Blood 125:336–345

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Reitman ZJ, Yan H (2010) Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. J Natl Cancer Inst 102:932–941

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Remke M, Ramaswamy V, Peacock J et al (2013) TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma. Acta Neuropathol 126:917–929

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Reuss DE, Sahm F, Schrimpf D et al (2015) ATRX and IDH1-R132H immunohistochemistry with subsequent copy number analysis and IDH sequencing as a basis for an “integrated” diagnostic approach for adult astrocytoma, oligodendroglioma and glioblastoma. Acta Neuropathol 129:133–146

    CAS  PubMed  Google Scholar 

  117. Riemenschneider MJ, Jeuken JW, Wesseling P, Reifenberger G (2010) Molecular diagnostics of gliomas: state of the art. Acta Neuropathol 120:567–584

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Rohle D, Popovici-Muller J, Palaskas N et al (2013) An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 340:626–630

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Routhier CA, Mochel MC, Lynch K, Dias-Santagata D, Louis DN, Hoang MP (2013) Comparison of 2 monoclonal antibodies for immunohistochemical detection of BRAF V600E mutation in malignant melanoma, pulmonary carcinoma, gastrointestinal carcinoma, thyroid carcinoma, and gliomas. Hum Pathol 44:2563–2570

    CAS  PubMed  Google Scholar 

  120. Sabha N, Knobbe CB, Maganti M et al (2014) Analysis of IDH mutation, 1p/19q deletion, and PTEN loss delineates prognosis in clinical low-grade diffuse gliomas. Neuro Oncol 16:914–923

    CAS  PubMed  Google Scholar 

  121. Sahm F, Reuss D, Koelsche C et al (2014) Farewell to oligoastrocytoma: in situ molecular genetics favor classification as either oligodendroglioma or astrocytoma. Acta Neuropathol 128:551–559

    CAS  PubMed  Google Scholar 

  122. Sanai N, Chang S, Berger MS (2011) Low-grade gliomas in adults. J Neurosurg 115:948–965

    PubMed  Google Scholar 

  123. Schomas DA, Laack NN, Rao RD et al (2009) Intracranial low-grade gliomas in adults: 30-year experience with long-term follow-up at Mayo Clinic. Neuro Oncol 11:437–445

    PubMed Central  PubMed  Google Scholar 

  124. Schumacher T, Bunse L, Pusch S et al (2014) A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 512:324–327

    CAS  PubMed  Google Scholar 

  125. Schwartzentruber J, Korshunov A, Liu XY et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482:226–231

    CAS  PubMed  Google Scholar 

  126. Scoccianti S, Magrini SM, Ricardi U et al (2012) Radiotherapy and temozolomide in anaplastic astrocytoma: a retrospective multicenter study by the Central Nervous System Study Group of AIRO (Italian Association of Radiation Oncology). Neuro Oncol 14:798–807

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Seltzer MJ, Bennett BD, Joshi AD et al (2010) Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res 70:8981–8987

    PubMed Central  CAS  PubMed  Google Scholar 

  128. Shaw EG, Berkey B, Coons SW et al (2008) Recurrence following neurosurgeon-determined gross-total resection of adult supratentorial low-grade glioma: results of a prospective clinical trial. J Neurosurg 109:835–841

    PubMed  Google Scholar 

  129. Shaw EG, Wang M, Coons SW et al (2012) Randomized trial of radiation therapy plus procarbazine, lomustine, and vincristine chemotherapy for supratentorial adult low-grade glioma: initial results of RTOG 9802. J Clin Oncol 30:3065–3070

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Shonka NA, Theeler B, Cahill D et al (2013) Outcomes for patients with anaplastic astrocytoma treated with chemoradiation, radiation therapy alone or radiation therapy followed by chemotherapy: a retrospective review within the era of temozolomide. J Neurooncol 113:305–311

    CAS  PubMed  Google Scholar 

  131. Sievert AJ, Fisher MJ (2009) Pediatric low-grade gliomas. J Child Neurol 24:1397–1408

    PubMed Central  PubMed  Google Scholar 

  132. Sjoblom T, Jones S, Wood LD et al (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314:268–274

    PubMed  Google Scholar 

  133. Smith JS, Chang EF, Lamborn KR et al (2008) Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol 26:1338–1345

    PubMed  Google Scholar 

  134. Soffietti R, Baumert BG, Bello L et al (2010) Guidelines on management of low-grade gliomas: report of an EFNS-EANO Task Force. Eur J Neurol 17:1124–1133

    CAS  PubMed  Google Scholar 

  135. Sonoda Y, Kumabe T, Nakamura T et al (2009) Analysis of IDH1 and IDH2 mutations in Japanese glioma patients. Cancer Sci 100:1996–1998

    CAS  PubMed  Google Scholar 

  136. Suzuki H, Aoki K, Chiba K et al (2015) Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet [Epub ahead of print]

  137. Takami H, Yoshida A, Fukushima S et al (2014) Revisiting TP53 mutations and immunohistochemistry—a comparative study in 157 diffuse gliomas. Brain Pathol [Epub ahead of print]

  138. Takano S, Tian W, Matsuda M et al (2011) Detection of IDH1 mutation in human gliomas: comparison of immunohistochemistry and sequencing. Brain Tumor Pathol 28:115–123

    CAS  PubMed  Google Scholar 

  139. Tortosa A, Vinolas N, Villa S et al (2003) Prognostic implication of clinical, radiologic, and pathologic features in patients with anaplastic gliomas. Cancer 97:1063–1071

    PubMed  Google Scholar 

  140. Turcan S, Rohle D, Goenka A et al (2012) IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483:479–483

    PubMed Central  CAS  PubMed  Google Scholar 

  141. van den Bent MJ, Afra D, de Witte O et al (2005) Long-term efficacy of early versus delayed radiotherapy for low-grade astrocytoma and oligodendroglioma in adults: the EORTC 22845 randomised trial. Lancet 366:985–990

    PubMed  Google Scholar 

  142. van den Bent MJ, Brandes AA, Taphoorn MJ et al (2013) Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J Clin Oncol 31:344–350

    PubMed  Google Scholar 

  143. van den Bent MJ, Hartmann C, Preusser M et al (2013) Interlaboratory comparison of IDH mutation detection. J Neurooncol 112:173–178

    PubMed  Google Scholar 

  144. Venneti S, Garimella MT, Sullivan LM et al (2013) Evaluation of histone 3 lysine 27 trimethylation (H3K27me3) and enhancer of Zest 2 (EZH2) in pediatric glial and glioneuronal tumors shows decreased H3K27me3 in H3F3A K27M mutant glioblastomas. Brain Pathol

  145. Venneti S, Santi M, Felicella MM et al (2014) A sensitive and specific histopathologic prognostic marker for H3F3A K27M mutant pediatric glioblastomas. Acta Neuropathol 128:743–753

    PubMed Central  CAS  PubMed  Google Scholar 

  146. Verhaak RG, Hoadley KA, Purdom E et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110

    PubMed Central  CAS  PubMed  Google Scholar 

  147. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    CAS  PubMed  Google Scholar 

  148. Wakimoto H, Tanaka S, Curry WT et al (2014) Targetable signaling pathway mutations are associated with malignant phenotype in IDH-mutant gliomas. Clin Cancer Res 20:2898–2909

    PubMed Central  CAS  PubMed  Google Scholar 

  149. Wan PT, Garnett MJ, Roe SM et al (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116:855–867

    CAS  PubMed  Google Scholar 

  150. Wang F, Travins J, DeLaBarre B et al (2013) Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science 340:622–626

    CAS  PubMed  Google Scholar 

  151. Watanabe T, Nobusawa S, Kleihues P, Ohgaki H (2009) IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol 174:1149–1153

    PubMed Central  CAS  PubMed  Google Scholar 

  152. Watanabe T, Vital A, Nobusawa S, Kleihues P, Ohgaki H (2009) Selective acquisition of IDH1 R132C mutations in astrocytomas associated with Li–Fraumeni syndrome. Acta Neuropathol 117:653–656

    CAS  PubMed  Google Scholar 

  153. Weller M, van den Bent M, Hopkins K et al (2014) EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. Lancet Oncol 15:e395–e403

    PubMed  Google Scholar 

  154. Wick W, Hartmann C, Engel C et al (2009) NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with procarbazine, lomustine, and vincristine or temozolomide. J Clin Oncol 27:5874–5880

    CAS  PubMed  Google Scholar 

  155. Wick W, Platten M, Meisner C et al (2012) Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: the NOA-08 randomised, phase 3 trial. Lancet Oncol 13:707–715

    CAS  PubMed  Google Scholar 

  156. Wiestler B, Capper D, Holland-Letz T et al (2013) ATRX loss refines the classification of anaplastic gliomas and identifies a subgroup of IDH mutant astrocytic tumors with better prognosis. Acta Neuropathol 126:443–451

    CAS  PubMed  Google Scholar 

  157. Wiestler B, Capper D, Hovestadt V et al (2014) Assessing CpG island methylator phenotype, 1p/19q codeletion, and MGMT promoter methylation from epigenome-wide data in the biomarker cohort of the NOA-04 trial. Neuro Oncol 16:1630–1638

    PubMed  Google Scholar 

  158. Wiestler B, Capper D, Sill M et al (2014) Integrated DNA methylation and copy-number profiling identify three clinically and biologically relevant groups of anaplastic glioma. Acta Neuropathol 128:561–571

    CAS  PubMed  Google Scholar 

  159. Wong LH, McGhie JD, Sim M et al (2010) ATRX interacts with H3.3 in maintaining telomere structural integrity in pluripotent embryonic stem cells. Genome Res 20:351–360

    PubMed Central  CAS  PubMed  Google Scholar 

  160. Wu G, Broniscer A, McEachron TA et al (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44:251–253

    PubMed Central  CAS  PubMed  Google Scholar 

  161. Xu W, Yang H, Liu Y et al (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19:17–30

    PubMed Central  CAS  PubMed  Google Scholar 

  162. Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773

    PubMed Central  CAS  PubMed  Google Scholar 

  163. Zhang J, Wu G, Miller CP et al (2013) Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet 45:602–612

    PubMed Central  CAS  PubMed  Google Scholar 

  164. Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15:2343–2360

    CAS  PubMed  Google Scholar 

  165. Zhao S, Lin Y, Xu W et al (2009) Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 324:261–265

    PubMed Central  CAS  PubMed  Google Scholar 

  166. Zong H, Parada LF, Baker SJ (2015) Cell of origin for malignant gliomas and its implication in therapeutic development. Cold Spring Harb Perspect Biol [Epub ahead of print]

Download references

Acknowledgments

The authors thank Dr Kai Yamasaki for his invaluable assistance in data mining, Dr Oltea Sampetrean for her valuable comments on the origin of gliomas, Drs Hiromichi Suzuki and Atsushi Natsume for sharing the information of their accepted manuscript and Dr Sylvia Kocialkowski for the critical reading of the manuscript. The results presented in this review here are in part based upon data generated by the TCGA Research Network: http://cancergenome.nih.gov/. CEH is funded by the Canadian Institutes of Health Research and the Canadian Cancer Society Research Institute.

Conflict of interest

KI has received research grant from SRL, travel support from MSD and speaker honoraria from Eisai, Astellas Pharma, Otsuka Pharma, Sanofi, Daiichi Sankyo, Chugai Pharma, and TEIJIN Pharma. YN has received speaker honoraria from Eisai, Otsuka Pharma, MSD and Chugai Pharma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Ichimura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ichimura, K., Narita, Y. & Hawkins, C.E. Diffusely infiltrating astrocytomas: pathology, molecular mechanisms and markers. Acta Neuropathol 129, 789–808 (2015). https://doi.org/10.1007/s00401-015-1439-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-015-1439-7

Keywords

Navigation