Skip to main content

Genomic Heterogeneity of Aggressive Pediatric and Adult Diffuse Astrocytomas

  • Chapter
  • First Online:
Precision Molecular Pathology of Glioblastoma

Part of the book series: Molecular Pathology Library ((MPLB))

  • 504 Accesses

Abstract

Glioblastoma, formerly known as glioblastoma multiforme (GBM), is remarkable for its degree of both morphologic and genomic heterogeneity. In children and adults, as defined by the World Health Organization (WHO), GBM is a grade IV neoplasm with a diffusely infiltrative growth pattern populated by cells showing predominately astrocytic differentiation. As discussed in previous chapters, GBM features prominent nuclear atypia and cellular pleomorphism, as well as high tumor cell mitotic activity accompanied by microvascular proliferation and/ or necrosis. As its former name indicates, GBM may include one or many morphologic patterns within a single tumor. In some tumors, this reflects underlying clonal evolution with newly acquired genetic changes in tumor cell subpopulations. Even more variable than GBM morphology is the range of genomic heterogeneity, creating multiple molecular signatures that define tumor behavior, prognosis and treatment response independent of tumor histopathology. Furthermore, while pediatric and adult glioblastoma share many histopathologic similarities, they are unequivocally biologically distinct neoplasms. In many pediatric and adult gliomas, the molecular subgroup is a better predictor of tumor behavior than histologic grade. In particular, WHO grade II or III diffuse astrocytomas lacking morphologic features associated with GBM (microvascular proliferation and necrosis), but with certain defined molecular alterations, should be considered GBM for prognostic and therapeutic purposes due to their expected WHO grade IV-like behavior. The focus of this chapter centers on the genomic heterogeneity and pathobiology of aggressive pediatric and adult diffuse astrocytomas with WHO grade IV behavior independent of morphologic features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Louis DN, et al. WHO classification of tumours of the central nervous system. Revised 4th ed. Lyon: International Agency for Research on Cancer; 2016.

    Google Scholar 

  2. Fujisawa H, et al. Acquisition of the glioblastoma phenotype during astrocytoma progression is associated with loss of heterozygosity on 10q25-qter. Am J Pathol. 1999;155(2):387–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Georgescu M-M, Olar A. Genetic and histologic spatiotemporal evolution of recurrent, multifocal, multicentric and metastatic glioblastoma. Acta Neuropathol Commun. 2020;8(1):10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Consortium TG. Glioma through the looking GLASS: molecular evolution of diffuse gliomas and the Glioma Longitudinal Analysis Consortium. Neuro Oncol. 2018;20(7):873–84.

    Article  CAS  Google Scholar 

  5. Riehmer V, et al. Genomic profiling reveals distinctive molecular relapse patterns in IDH1/2 wild-type glioblastoma. Genes Chromosom Cancer. 2014;53(7):589–605.

    Article  CAS  PubMed  Google Scholar 

  6. Ostrom QT, et al. CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro Oncol. 2019;21(Supplement_5):v1–v100.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Stupp R, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–66.

    Article  CAS  PubMed  Google Scholar 

  8. Guerreiro Stucklin AS, et al. Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. Nat Commun. 2019;10(1):4343.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Mackay A, et al. Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell. 2017;32(4):520–537 e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sturm D, et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell. 2012;22(4):425–37.

    Article  CAS  PubMed  Google Scholar 

  11. Jones DTW, et al. Molecular characteristics and therapeutic vulnerabilities across paediatric solid tumours. Nat Rev Cancer. 2019;19(8):420–38.

    Article  CAS  PubMed  Google Scholar 

  12. Phillips HS, et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 2006;9(3):157–73.

    Article  CAS  PubMed  Google Scholar 

  13. Brennan CW, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Verhaak RG, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Faury D, et al. Molecular profiling identifies prognostic subgroups of pediatric glioblastoma and shows increased YB-1 expression in tumors. J Clin Oncol. 2007;25(10):1196–208.

    Article  CAS  PubMed  Google Scholar 

  16. Paugh BS, et al. Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J Clin Oncol. 2010;28(18):3061–8.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Puget S, et al. Mesenchymal transition and PDGFRA amplification/mutation are key distinct oncogenic events in pediatric diffuse intrinsic pontine gliomas. PLoS One. 2012;7(2):e30313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Paugh BS, et al. Genome-wide analyses identify recurrent amplifications of receptor tyrosine kinases and cell-cycle regulatory genes in diffuse intrinsic pontine glioma. J Clin Oncol. 2011;29(30):3999–4006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bax DA, et al. A distinct spectrum of copy number aberrations in pediatric high-grade gliomas. Clin Cancer Res. 2010;16(13):3368–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schwartzentruber J, et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature. 2012;482(7384):226–31.

    Article  CAS  PubMed  Google Scholar 

  21. Bender S, et al. Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell. 2013;24(5):660–72.

    Article  CAS  PubMed  Google Scholar 

  22. Wu G, et al. The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet. 2014;46(5):444–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carvalho D, et al. The prognostic role of intragenic copy number breakpoints and identification of novel fusion genes in paediatric high grade glioma. Acta Neuropathol Commun. 2014;2:23.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cancer Genome Atlas Research, N. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–8.

    Article  CAS  Google Scholar 

  25. Malhotra A, et al. Breakpoint profiling of 64 cancer genomes reveals numerous complex rearrangements spawned by homology-independent mechanisms. Genome Res. 2013;23(5):762–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Richardson TE, et al. Genetic and epigenetic features of rapidly progressing IDH-mutant astrocytomas. J Neuropathol Exp Neurol. 2018;77(7):542–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mirchia K, et al. Total copy number variation as a prognostic factor in adult astrocytoma subtypes. Acta Neuropathol Commun. 2019;7(1):92.

    Article  PubMed  CAS  Google Scholar 

  28. Hobbs J, et al. Paradoxical relationship between the degree of EGFR amplification and outcome in glioblastomas. Am J Surg Pathol. 2012;36(8):1186–93.

    Article  PubMed  PubMed Central  Google Scholar 

  29. An Z, et al. Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. Oncogene. 2018;37(12):1561–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Aoki K, et al. Prognostic relevance of genetic alterations in diffuse lower-grade gliomas. Neuro Oncol. 2018;20:66–77.

    Article  CAS  PubMed  Google Scholar 

  31. Stichel D, et al. Distribution of EGFR amplification, combined chromosome 7 gain and chromosome 10 loss, and TERT promoter mutation in brain tumors and their potential for the reclassification of IDHwt astrocytoma to glioblastoma. Acta Neuropathol. 2018;136(5):793–803.

    Article  PubMed  Google Scholar 

  32. Tabouret E, et al. Prognostic impact of the 2016 WHO classification of diffuse gliomas in the French POLA cohort. Acta Neuropathol. 2016;132(4):625–34.

    Article  PubMed  Google Scholar 

  33. Weller M, et al. Molecular classification of diffuse cerebral WHO grade II/III gliomas using genome- and transcriptome-wide profiling improves stratification of prognostically distinct patient groups. Acta Neuropathol. 2015;129(5):679–93.

    Article  CAS  PubMed  Google Scholar 

  34. Wijnenga MMJ, et al. Molecular and clinical heterogeneity of adult diffuse low-grade IDH wild-type gliomas: assessment of TERT promoter mutation and chromosome 7 and 10 copy number status allows superior prognostic stratification. Acta Neuropathol. 2017;134(6):957–9.

    Article  CAS  PubMed  Google Scholar 

  35. Vaubel RA, et al. Recurrent copy number alterations in low-grade and anaplastic pleomorphic xanthoastrocytoma with and without BRAF V600E mutation. Brain Pathol. 2018;28(2):172–82.

    Article  CAS  PubMed  Google Scholar 

  36. Zheng S, et al. A survey of intragenic breakpoints in glioblastoma identifies a distinct subset associated with poor survival. Genes Dev. 2013;27(13):1462–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Biernat W, et al. Predominant expression of mutant EGFR (EGFRvIII) is rare in primary glioblastomas. Brain Pathol. 2004;14(2):131–6.

    Article  CAS  PubMed  Google Scholar 

  38. Wong AJ, et al. Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc Natl Acad Sci U S A. 1992;89(7):2965–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mondal G, et al. Pediatric bithalamic gliomas have a distinct epigenetic signature and frequent EGFR exon 20 insertions resulting in potential sensitivity to targeted kinase inhibition. Acta Neuropathol. 2020;139(6):1071–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cho J, et al. Glioblastoma-derived epidermal growth factor receptor carboxyl-terminal deletion mutants are transforming and are sensitive to EGFR-directed therapies. Cancer Res. 2011;71(24):7587–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ozawa T, et al. PDGFRA gene rearrangements are frequent genetic events in PDGFRA-amplified glioblastomas. Genes Dev. 2010;24(19):2205–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Paugh BS, et al. Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas. Cancer Res. 2013;73(20):6219–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Duffner PK, et al. Treatment of infants with malignant gliomas: the Pediatric Oncology Group experience. J Neuro-Oncol. 1996;28(2–3):245–56.

    CAS  Google Scholar 

  44. Wu W, et al. Joint NCCTG and NABTC prognostic factors analysis for high-grade recurrent glioma. Neuro Oncol. 2010;12(2):164–72.

    Article  CAS  PubMed  Google Scholar 

  45. Clarke M, et al. Infant high-grade gliomas comprise multiple subgroups characterized by novel targetable gene fusions and favorable outcomes. Cancer Discov. 2020;10(7):942–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. International Cancer Genome Consortium PedBrain Tumor, P. Recurrent MET fusion genes represent a drug target in pediatric glioblastoma. Nat Med. 2016;22(11):1314–20.

    Article  CAS  Google Scholar 

  47. Torre M, et al. Molecular and clinicopathologic features of gliomas harboring NTRK fusions. Acta Neuropathol Commun. 2020;8(1):107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jones DT, et al. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet. 2013;45(8):927–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Di Stefano AL, et al. Detection, characterization, and inhibition of FGFR-TACC fusions in IDH wild-type glioma. Clin Cancer Res. 2015;21(14):3307–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Bielle F, et al. Diffuse gliomas with FGFR3-TACC3 fusion have characteristic histopathological and molecular features. Brain Pathol. 2018;28(5):674–83.

    Article  CAS  PubMed  Google Scholar 

  51. Lasorella A, Sanson M, Iavarone A. FGFR-TACC gene fusions in human glioma. Neuro Oncol. 2017;19(4):475–83.

    CAS  PubMed  Google Scholar 

  52. Costa R, et al. FGFR3-TACC3 fusion in solid tumors: mini review. Oncotarget. 2016;7(34):55924–38.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Granberg KJ, et al. Strong FGFR3 staining is a marker for FGFR3 fusions in diffuse gliomas. Neuro Oncol. 2017;19(9):1206–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Parker BC, et al. The tumorigenic FGFR3-TACC3 gene fusion escapes miR-99a regulation in glioblastoma. J Clin Invest. 2013;123(2):855–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Huynh KD, et al. BCoR, a novel corepressor involved in BCL-6 repression. Genes Dev. 2000;14(14):1810–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Astolfi A, et al. BCOR involvement in cancer. Epigenomics. 2019;11(7):835–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sturm D, et al. New brain tumor entities emerge from molecular classification of CNS-PNETs. Cell. 2016;164(5):1060–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Roy A, et al. Recurrent internal tandem duplications of BCOR in clear cell sarcoma of the kidney. Nat Commun. 2015;6:8891.

    Article  CAS  PubMed  Google Scholar 

  59. Torre M, et al. Recurrent EP300-BCOR fusions in pediatric gliomas with distinct clinicopathologic features. J Neuropathol Exp Neurol. 2019;78(4):305–14.

    Article  CAS  PubMed  Google Scholar 

  60. Pisapia DJ, et al. Fusions involving BCOR and CREBBP are rare events in infiltrating glioma. Acta Neuropathol Commun. 2020;8(1):80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sturm D, et al. Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge. Nat Rev Cancer. 2014;14(2):92–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Phillips JJ, et al. PDGFRA amplification is common in pediatric and adult high-grade astrocytomas and identifies a poor prognostic group in IDH1 mutant glioblastoma. Brain Pathol. 2013;23(5):565–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zarghooni M, et al. Whole-genome profiling of pediatric diffuse intrinsic pontine gliomas highlights platelet-derived growth factor receptor alpha and poly (ADP-ribose) polymerase as potential therapeutic targets. J Clin Oncol. 2010;28(8):1337–44.

    Article  CAS  PubMed  Google Scholar 

  64. Buczkowicz P, et al. Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat Genet. 2014;46(5):451–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Donson AM, et al. MGMT promoter methylation correlates with survival benefit and sensitivity to temozolomide in pediatric glioblastoma. Pediatr Blood Cancer. 2007;48(4):403–7.

    Article  PubMed  Google Scholar 

  66. Lee JY, et al. MGMT promoter gene methylation in pediatric glioblastoma: analysis using MS-MLPA. Childs Nerv Syst. 2011;27(11):1877–83.

    Article  PubMed  Google Scholar 

  67. Korshunov A, et al. H3-/IDH-wild type pediatric glioblastoma is comprised of molecularly and prognostically distinct subtypes with associated oncogenic drivers. Acta Neuropathol. 2017;134(3):507–16.

    Article  CAS  PubMed  Google Scholar 

  68. Noushmehr H, et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell. 2010;17(5):510–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Khuong-Quang DA, et al. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol. 2012;124(3):439–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lu C, et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature. 2012;483(7390):474–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Korshunov A, et al. Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathol. 2015;129(5):669–78.

    Article  CAS  PubMed  Google Scholar 

  72. Tauziède-Espariat A, et al. The pediatric supratentorial MYCN-amplified high-grade gliomas methylation class presents the same radiological, histopathological and molecular features as their pontine counterparts. Acta Neuropathol Commun. 2020;8(1):104.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Schindler G, et al. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol. 2011;121(3):397–405.

    Article  CAS  PubMed  Google Scholar 

  74. Ida CM, et al. Pleomorphic xanthoastrocytoma: natural history and long-term follow-up. Brain Pathol. 2015;25(5):575–86.

    Article  CAS  PubMed  Google Scholar 

  75. Louis DN, et al. The 2016 World Health Organization Classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131:803.

    Article  PubMed  Google Scholar 

  76. Pollack IF, et al. IDH1 mutations are common in malignant gliomas arising in adolescents: a report from the Children’s Oncology Group. Childs Nerv Syst. 2011;27(1):87–94.

    Article  PubMed  Google Scholar 

  77. Nobusawa S, et al. IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas. Clin Cancer Res. 2009;15(19):6002–7.

    Article  CAS  PubMed  Google Scholar 

  78. Yan H, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360(8):765–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hartmann C, et al. Long-term survival in primary glioblastoma with versus without isocitrate dehydrogenase mutations. Clin Cancer Res. 2013;19(18):5146–57.

    Article  CAS  PubMed  Google Scholar 

  80. Korshunov A, et al. Integrated molecular characterization of IDH-mutant glioblastomas. Neuropathol Appl Neurobiol. 2019;45:108–18.

    Article  CAS  PubMed  Google Scholar 

  81. Gerber NK, et al. Transcriptional diversity of long-term glioblastoma survivors. Neuro Oncol. 2014;16(9):1186–95.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Yoda RA, et al. Mitotic index thresholds do not predict clinical outcome for IDH-mutant astrocytoma. J Neuropathol Exp Neurol. 2019;78(11):1002–10.

    Article  PubMed  Google Scholar 

  83. Appay R, et al. CDKN2A homozygous deletion is a strong adverse prognosis factor in diffuse malignant IDH-mutant gliomas. Neuro Oncol. 2019;21:1519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cimino PJ, Holland EC. Targeted copy number analysis outperforms histological grading in predicting patient survival for WHO grade II/III IDH-mutant astrocytomas. Neuro Oncol. 2019;21(6):819.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Perry A, et al. CDKN2A loss is associated with shortened survival in infiltrating astrocytomas but not oligodendrogliomas or mixed oligoastrocytomas. Neuro Oncol. 2014;16(suppl_3):iii1–iii22.

    Article  PubMed Central  Google Scholar 

  86. Louis DN, et al. cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol. 2020;30(4):844–856. https://doi.org/10.1111/bpa.12832. Epub 2020 Apr 19. PMID: 32307792.

  87. Brat DJ, et al. cIMPACT-NOW update 5: recommended grading criteria and terminologies for IDH-mutant astrocytomas. Acta Neuropathol. 2020;139(3):603–8.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Parsons DW, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321(5897):1807–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nonoguchi N, et al. TERT promoter mutations in primary and secondary glioblastomas. Acta Neuropathol. 2013;126(6):931–7.

    Article  CAS  PubMed  Google Scholar 

  90. Liu XY, et al. Frequent ATRX mutations and loss of expression in adult diffuse astrocytic tumors carrying IDH1/IDH2 and TP53 mutations. Acta Neuropathol. 2012;124(5):615–25.

    Article  CAS  PubMed  Google Scholar 

  91. Solomon DA, et al. Diffuse midline gliomas with histone H3-K27M mutation: a series of 47 cases assessing the spectrum of morphologic variation and associated genetic alterations. Brain Pathol. 2016;26(5):569–80.

    Article  CAS  PubMed  Google Scholar 

  92. Meyronet D, et al. Characteristics of H3 K27M-mutant gliomas in adults. Neuro Oncol. 2017;19(8):1127–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tesileanu CMS, et al. Survival of diffuse astrocytic glioma, IDH1/2 wildtype, with molecular features of glioblastoma, WHO grade IV: a confirmation of the cIMPACT-NOW criteria. Neuro Oncol. 2020;22(4):515–23.

    Article  CAS  PubMed  Google Scholar 

  94. Lee Y, et al. The frequency and prognostic effect of TERT promoter mutation in diffuse gliomas. Acta Neuropathol Commun. 2017;5(1):62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Batista R, et al. The prognostic impact of TERT promoter mutations in glioblastomas is modified by the rs2853669 single nucleotide polymorphism. Int J Cancer. 2016;139(2):414–23.

    Article  CAS  PubMed  Google Scholar 

  96. Koelsche C, et al. Distribution of TERT promoter mutations in pediatric and adult tumors of the nervous system. Acta Neuropathol. 2013;126(6):907–15.

    Article  CAS  PubMed  Google Scholar 

  97. Jones C, Baker SJ. Unique genetic and epigenetic mechanisms driving paediatric diffuse high-grade glioma. Nat Rev Cancer. 2014;14(10):651–61.

    Article  CAS  Google Scholar 

  98. Nicolaides TP, et al. Targeted therapy for BRAFV600E malignant astrocytoma. Clin Cancer Res. 2011;17(24):7595–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wu G, et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet. 2012;44(3):251–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Skene PJ, Henikoff S. Histone variants in pluripotency and disease. Development. 2013;140(12):2513–24.

    Article  CAS  PubMed  Google Scholar 

  101. Wan YCE, Liu J, Chan KM. Histone H3 mutations in cancer. Curr Pharmacol Rep. 2018;4(4):292–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fontebasso AM, et al. Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma. Nat Genet. 2014;46(5):462–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Taylor KR, et al. Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nat Genet. 2014;46(5):457–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fontebasso AM, et al. Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric high-grade gliomas. Acta Neuropathol. 2013;125(5):659–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Temime-Smaali N, et al. The G-quadruplex ligand telomestatin impairs binding of topoisomerase IIIalpha to G-quadruplex-forming oligonucleotides and uncaps telomeres in ALT cells. PLoS One. 2009;4(9):e6919.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Aihara K, et al. H3F3A K27M mutations in thalamic gliomas from young adult patients. Neuro Oncol. 2014;16(1):140–6.

    Article  CAS  PubMed  Google Scholar 

  107. Davis RJ, Welcker M, Clurman BE. Tumor suppression by the Fbw7 ubiquitin ligase: mechanisms and opportunities. Cancer Cell. 2014;26(4):455–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Welcker M, et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci U S A. 2004;101(24):9085–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bjerke L, et al. Histone H3.3. mutations drive pediatric glioblastoma through upregulation of MYCN. Cancer Discov. 2013;3(5):512–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Li M, Liu GH, Izpisua Belmonte JC. Navigating the epigenetic landscape of pluripotent stem cells. Nat Rev Mol Cell Biol. 2012;13(8):524–35.

    Article  CAS  PubMed  Google Scholar 

  111. Hirabayashi Y, Gotoh Y. Epigenetic control of neural precursor cell fate during development. Nat Rev Neurosci. 2010;11(6):377–88.

    Article  CAS  PubMed  Google Scholar 

  112. Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293(5532):1074–80.

    Article  CAS  PubMed  Google Scholar 

  113. Klonou A, et al. Chromatin remodeling defects in pediatric brain tumors. Ann Transl Med. 2018;6(12):248.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Plass C, et al. Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer. Nat Rev Genet. 2013;14(11):765–80.

    Article  CAS  PubMed  Google Scholar 

  115. Lewis PW, et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science. 2013;340(6134):857–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chan KM, et al. The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Dev. 2013;27(9):985–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Di Lorenzo A, Bedford MT. Histone arginine methylation. FEBS Lett. 2011;585(13):2024–31.

    Article  PubMed  CAS  Google Scholar 

  118. Killela PJ, et al. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci U S A. 2013;110(15):6021–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kam KL, et al. Is next-generation sequencing alone sufficient to reliably diagnose gliomas? J Neuropathol Exp Neurol. 2020;79(7):763–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Jones C, et al. Pediatric high-grade glioma: biologically and clinically in need of new thinking. Neuro Oncol. 2017;19(2):153–61.

    CAS  PubMed  Google Scholar 

  121. Coleman C, et al. Pediatric hemispheric high-grade glioma: targeting the future. Cancer Metastasis Rev. 2020;39(1):245–60.

    Article  PubMed  Google Scholar 

  122. Toll SA, et al. Sustained response of three pediatric BRAF(V600E) mutated high-grade gliomas to combined BRAF and MEK inhibitor therapy. Oncotarget. 2019;10(4):551–7.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Laetsch TW, et al. Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: phase 1 results from a multicentre, open-label, phase 1/2 study. Lancet Oncol. 2018;19(5):705–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Drilon A, et al. Efficacy of larotrectinib in TRK fusion–positive cancers in adults and children. N Engl J Med. 2018;378(8):731–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ziegler DS, et al. Brief Report: Potent clinical and radiological response to larotrectinib in TRK fusion-driven high-grade glioma. Br J Cancer. 2018;119(6):693–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Grasso CS, et al. Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nat Med. 2015;21(6):555–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hashizume R, et al. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nat Med. 2014;20(12):1394–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana L. Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pierson, C.R., Thomas, D.L. (2021). Genomic Heterogeneity of Aggressive Pediatric and Adult Diffuse Astrocytomas. In: Otero, J.J., Becker, A.P. (eds) Precision Molecular Pathology of Glioblastoma. Molecular Pathology Library. Springer, Cham. https://doi.org/10.1007/978-3-030-69170-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69170-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69169-1

  • Online ISBN: 978-3-030-69170-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics