Skip to main content

Advertisement

Log in

The role of proteomics in dementia and Alzheimer’s disease

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Proteomic analysis enables us to identify dementia-related protein profiles of both genetic and environmental origins. In this review, current proteomics technologies are described including many examples of clinical proteomics studies. Many of these studies present only results of the discovery phase. Progression to the validation phase was achieved by developing more advanced proteomics technologies such as fluorescence two-dimensional differential gel electrophoresis or isobaric tagging for relative and absolute protein quantification. These technologies will lead to the design of several new Alzheimer’s disease-related protein panels for the analysis of CSF. On these new panels, established markers such as τ and Aβ42 will be used in combination with novel markers, for example β-2-microglobulin, brain-derived neurotrophic factor 1 and fragments of cystatin C. However, there are still limitations to using proteomic assays. The preparation of homogeneous sample material is difficult due the complexity of brain tissue. Laser capture microdissection and recently developed more sensitive proteomics methods, for example fluorescence saturation labelling, will overcome these limitations. Combining proteomics with approaches at the level of the genome and transcriptome followed by interpretation by systems biology will soon shed further light on dementia-related pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abdi F, Quinn JF, Jankovic J et al (2006) Detection of biomarkers with a multiplex quantitative proteomic platform in cerebrospinal fluid of patients with neurodegenerative disorders. J Alzheimers Dis 9:293–348

    PubMed  CAS  Google Scholar 

  2. Adolfsson R, Gottfries CG, Oreland L, Wiberg A, Winblad B (1980) Increased activity of brain and platelet monoamine-oxidase in dementia of Alzheimer type. Life Sci 27:1029–1034. doi:10.1016/0024-3205(80)90025-9

    Article  PubMed  CAS  Google Scholar 

  3. Ai KZ, Vermuyten K, Dedeyn PP, Lowenthal A, Karcher D (1989) A serum-protein involved in aging. Mol Chem Neuropathol 11:131–141

    Article  PubMed  CAS  Google Scholar 

  4. Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:141–145. doi:10.1016/S0304-3940(01)01636-6

    Article  PubMed  CAS  Google Scholar 

  5. Alafuzoff I, Adolfsson R, Bucht G, Jellum E, Mehta PD, Winblad B (1986) Isoelectric-focusing and two-dimensional gel-electrophoresis in plasma and cerebrospinal-fluid from patients with dementia. Eur Neurol 25:285–289. doi:10.1159/000116023

    Article  PubMed  CAS  Google Scholar 

  6. Alban A, David SO, Bjorkesten L et al (2003) A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3:36–44. doi:10.1002/pmic.200390006

    Article  PubMed  CAS  Google Scholar 

  7. Arriagada PV, Marzloff K, Hyman BT (1992) Distribution of Alzheimer-type pathological changes in nondemented elderly individuals matches the pattern in Alzheimers disease. Neurology 42:1681–1688

    PubMed  CAS  Google Scholar 

  8. Blennow K (2005) CSF biomarkers for Alzheimer’s disease: use in early diagnosis and evaluation of drug treatment. Expert Rev Mol Diagn 5:661–672. doi:10.1586/14737159.5.5.661

    Article  PubMed  CAS  Google Scholar 

  9. Blennow K, Hampel H (2003) CSF markers for incipient Alzheimer’s disease. Lancet Neurol 2:605–613. doi:10.1016/S1474-4422(03)00530-1

    Article  PubMed  CAS  Google Scholar 

  10. Brechlin P, Jahn O, Steinacker P et al (2008) Cerebrospinal fluid-optimized two-dimensional difference gel electrophoresis (2-D DIGE) facilitates the differential diagnosis of Creutzfeldt-Jakob disease. Proteomics 8:4357–4366. doi:10.1002/pmic.200800375

    Article  PubMed  CAS  Google Scholar 

  11. Butterfield DA, Castegna A (2003) Proteomic analysis of oxidatively modified proteins in Alzheimer’s disease brain: insights into neurodegeneration. Cell Mol Biol 49:747–751

    PubMed  CAS  Google Scholar 

  12. Butterfield DA, Sultana R (2007) Redox proteomics identification of oxidatively modified brain proteins in Alzheimer’s disease and mild cognitive impairment: insights into the progression of this dementing disorder. J Alzheimers Dis 12:61–72

    PubMed  CAS  Google Scholar 

  13. Butterfield DA, Sultana R (2008) Identification of 3-nitrotyosine-modified brain proteins by redox proteomics. Nitric oxide, Part F. Methods Enzymol 440:295–308

    Article  PubMed  CAS  Google Scholar 

  14. Butterfield DA, Boyd-Kimball D, Castegna A (2003) Proteomics in Alzheimer’s disease: insights into potential mechanisms of neurodegeneration. J Neurochem 86:1313–1327. doi:10.1046/j.1471-4159.2003.01948.x

    Article  PubMed  CAS  Google Scholar 

  15. Butterfield DA, Perluigi M, Sultana R (2006) Oxidative stress in Alzheimer’s disease brain: new insights from redox proteomics. Eur J Pharmacol 545:39–50. doi:10.1016/j.ejphar.2006.06.026

    Article  PubMed  CAS  Google Scholar 

  16. Carrette O, Demalte I, Scherl A et al (2003) A panel of cerebrospinal fluid potential biomarkers for the diagnosis of Alzheimer’s disease. Proteomics 3:1486–1494. doi:10.1002/pmic.200300470

    Article  PubMed  CAS  Google Scholar 

  17. Castano EM, Roher AE, Esh CL, Kokjohn TA, Beach T (2006) Comparative proteomics of cerebrospinal fluid in neuropathologically confirmed Alzheimer’s disease and non-demented elderly subjects. Neurol Res 28:155–163. doi:10.1179/016164106X98035

    Article  PubMed  CAS  Google Scholar 

  18. Castegna A, Aksenov M, Aksenova M et al (2002) Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part 1. Creatine kinase bb, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic Biol Med 33:562–571. doi:10.1016/S0891-5849(02)00914-0

    Article  PubMed  CAS  Google Scholar 

  19. Castegna A, Aksenov M, Thongboonkerd V et al (2002) Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II. Dihydropyrimidinase-related protein 2, alpha-enolase and heat shock cognate 71. J Neurochem 82:1524–1532. doi:10.1046/j.1471-4159.2002.01103.x

    Article  PubMed  CAS  Google Scholar 

  20. Castegna A, Thongboonkerd V, Klein JB, Lynn B, Markesbery WR, Butterfield DA (2003) Proteomic identification of nitrated proteins in Alzheimer’s disease brain. J Neurochem 85:1394–1401. doi:10.1046/j.1471-4159.2003.01786.x

    Article  PubMed  CAS  Google Scholar 

  21. Chait BT, Kent SBH (1992) Weighing naked proteins: practical, high-accuracy mass measurement of peptides and proteins. Science 257:1885–1894. doi:10.1126/science.1411504

    Article  PubMed  CAS  Google Scholar 

  22. Cheon MS, Kim SH, Fountoulakis M, Lubec G (2003) Heart type fatty acid binding protein (H-FABP) is decreased in brains of patients with Down syndrome and Alzheimer’s disease. J Neural Trans Suppl 225–234

  23. Choe LH, Dutt MJ, Relkin N, Lee KH (2002) Studies of potential cerebrospinal fluid molecular markers for Alzheimer’s disease. Electrophoresis 23:2247–2251. doi:10.1002/1522-2683(200207)23:14<2247::AID-ELPS2247>3.0.CO;2-M

    Article  PubMed  CAS  Google Scholar 

  24. Chromy BA, Gonzales AD, Perkins J et al (2004) Proteomic analysis of human serum by two-dimensional differential gel electrophoresis after depletion of high-abundant proteins. J Proteome Res 3:1120–1127. doi:10.1021/pr049921p

    Article  PubMed  CAS  Google Scholar 

  25. Colciaghi F, Marcello E, Borroni B et al (2004) Platelet APP, ADAM 10 and BACE alterations in the early stages of Alzheimer disease. Neurology 62:498–501

    PubMed  CAS  Google Scholar 

  26. Davidsson P, Sjogren M, Andreasen N et al (2002) Studies of the pathophysiological mechanisms in frontotemporal dementia by proteome analysis of CSF proteins. Brain Res Mol Brain Res 109:128–133. doi:10.1016/S0169-328X(02)00549-1

    Article  PubMed  CAS  Google Scholar 

  27. Davidsson P, Westman-Brinkmalm A, Nilsson CL et al (2002) Proteome analysis of cerebrospinal fluid proteins in Alzheimer patients. Neuroreport 13:611–615. doi:10.1097/00001756-200204160-00015

    Article  PubMed  CAS  Google Scholar 

  28. Dubois B, Feldman HH, Jacova C et al (2007) Research criteria for the diagnosis of Alzheimers disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 6:734–746. doi:10.1016/S1474-4422(07)70178-3

    Article  PubMed  Google Scholar 

  29. Edgar PF, Schonberger SJ, Dean B, Faull RLM, Kydd R, Cooper GJS (1999) A comparative proteome analysis of hippocampal tissue from schizophrenic and Alzheimer’s disease individuals. Mol Psychiatry 4:173–178. doi:10.1038/sj.mp.4000463

    Article  PubMed  CAS  Google Scholar 

  30. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass-spectrometry of large biomolecules. Science 246:64–71. doi:10.1126/science.2675315

    Article  PubMed  CAS  Google Scholar 

  31. Finehout EJ, Franck Z, Choe LH, Relkin N, Lee KH (2007) Cerebrospinal fluid proteomic biomarkers for Alzheimer’s disease. Ann Neurol 61:120–129. doi:10.1002/ana.21038

    Article  PubMed  CAS  Google Scholar 

  32. Fountoulakis M, Cairns N, Lubec G (1999) Increased levels of 14–3-3 gamma and epsilon proteins in brain of patients with Alzheimer’s disease and Down syndrome. J Neural Transm Suppl 57:323–335

    PubMed  CAS  Google Scholar 

  33. Frey HJ, Mattila KM, Korolainen MA, Pirttila T (2005) Problems associated with biological markers of Alzheimer’s disease. Neurochem Res 30:1501–1510. doi:10.1007/s11064-005-8827-7

    Article  PubMed  CAS  Google Scholar 

  34. Gatz M, Reynolds CA, Fratiglioni L et al (2006) Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 63:168–174. doi:10.1001/archpsyc.63.2.168

    Article  PubMed  Google Scholar 

  35. Gottfries CG (1990) Neurochemical aspects on aging and diseases with cognitive impairment. J Neurosci Res 27:541–547. doi:10.1002/jnr.490270415

    Article  PubMed  CAS  Google Scholar 

  36. Greber S, Lubec G, Cairns N, Fountoulakis M (1999) Decreased levels of synaptosomal associated protein 25 in the brain of patients with Down syndrome and Alzheimer’s disease. Electrophoresis 20:928–934. doi:10.1002/(SICI)1522-2683(19990101)20:4/5<928::AID-ELPS928>3.0.CO;2-Z

    Article  PubMed  CAS  Google Scholar 

  37. Harman D (1956) Aging: a theory based on free-radical and radiation chemistry. J Gerontol 11:298–300

    PubMed  CAS  Google Scholar 

  38. Harman D (2003) The free radical theory of aging. Antioxid Redox Signal 5:557–561. doi:10.1089/152308603770310202

    Article  PubMed  CAS  Google Scholar 

  39. Harrington MG, Merril CR, Asher DM, Gajdusek DC (1986) Abnormal proteins in the cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. N Engl J Med 315:279–383

    PubMed  CAS  Google Scholar 

  40. Hayflick L (1998) How and why we age. Exp Gerontol 33:639–653. doi:10.1016/S0531-5565(98)00023-0

    Article  PubMed  CAS  Google Scholar 

  41. Hensley K, Hall N, Subramaniam R et al (1995) Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J Neurochem 65:2146–2156

    Article  PubMed  CAS  Google Scholar 

  42. Hortin GL (2006) The MALDI-TOF mass spectrometric view of the plasma proteome and peptidome. Clin Chem 52:1223–1237. doi:10.1373/clinchem.2006.069252

    Article  PubMed  CAS  Google Scholar 

  43. Hortin GL, Jortani SA, Ritchie JC, Valdes R, Chan DW (2006) Proteomics: a new diagnostic frontier. Clin Chem 52:1218–1222. doi:10.1373/clinchem.2006.067280

    Article  PubMed  CAS  Google Scholar 

  44. Hsich G, Kinney K, Gibbs CJ, Lee KH, Harrington MG (1996) The 14–3-3 brain protein in cerebrospinal fluid as a marker for transmissible spongiform encephalopathies. N Engl J Med 335:924–930. doi:10.1056/NEJM199609263351303

    Article  PubMed  CAS  Google Scholar 

  45. Hu Y, Malone JP, Fagan AM, Townsend RR, Holtzman DM (2005) Comparative proteomic analysis of intra- and interindividual variation in human cerebrospinal fluid. Mol Cell Proteomics 4:2000–2009. doi:10.1074/mcp.M500207-MCP200

    Article  PubMed  CAS  Google Scholar 

  46. Hye A, Lynham S, Thambisetty M et al (2006) Proteome-based plasma biomarkers for Alzheimer’s disease. Brain 129:3042–3050. doi:10.1093/brain/awl279

    Article  PubMed  CAS  Google Scholar 

  47. Imhof A, Kovari E, von Gunten A et al (2007) Morphological substrates of cognitive decline in nonagenarians and centenarians: a new paradigm? J Neurol Sci 257:72–79. doi:10.1016/j.jns.2007.01.025

    Article  PubMed  Google Scholar 

  48. Issaq HJ (2001) The role of separation science in proteomics research. Electrophoresis 22:3629–3638. doi:10.1002/1522-2683(200109)22:17<3629::AID-ELPS3629>3.0.CO;2-O

    Article  PubMed  CAS  Google Scholar 

  49. Jellinger KA (1997) Neuropathological staging of Alzheimer-related lesions: the challenge of establishing relations to age. Neurobiol Aging 18:369–375. doi:10.1016/S0197-4580(97)00048-1

    Article  PubMed  CAS  Google Scholar 

  50. Jellinger KA (2009) Criteria for the neuropathological diagnosis of dementing disorders: routes out of the swamp? Acta Neuropathol 117:101–110. doi:10.1007/s00401-008-0466-z

    Article  PubMed  Google Scholar 

  51. Jin JH, Hulette C, Wang Y et al (2006) Proteomic identification of a stress protein, mortalin/mthsp70/GRP75: relevance to Parkinson disease. Mol Cell Proteomics 5:1193–1204. doi:10.1074/mcp.M500382-MCP200

    Article  PubMed  CAS  Google Scholar 

  52. Jung SM, Lee K, Lee J et al (2008) Both plasma retinol-binding protein and haptoglobin precursor allele 1 in CSF: candidate biomarkers for the progression of normal to mild cognitive impairment to Alzheimer’s disease. Neurosci Lett 436:153–157. doi:10.1016/j.neulet.2008.03.010

    Article  PubMed  CAS  Google Scholar 

  53. Keller JN, Schmitt FA, Scheff SW et al (2005) Evidence of increased oxidative damage in subjects with mild cognitive impairment. Neurology 64:1152–1156

    PubMed  CAS  Google Scholar 

  54. Kim SH, Vlkolinsky R, Cairns N, Lubec G (2000) Decreased levels of complex III core protein 1 and complex V beta chain in brains from patients with Alzheimer’s disease and Down syndrome. Cell Mol Life Sci 57:1810–1816. doi:10.1007/PL00000661

    Article  PubMed  CAS  Google Scholar 

  55. Kim SH, Vlkolinsky R, Cairns N, Fountoulakis M, Lubec G (2001) The reduction of NADH ubiquinone oxidoreductase 24-and 75-kDa subunits in brains of patients with Down syndrome and Alzheimer’s disease. Life Sci 68:2741–2750. doi:10.1016/S0024-3205(01)01074-8

    Article  PubMed  CAS  Google Scholar 

  56. Korolainen MA, Nyman TA, Nyyssonen P, Hartikainen ES, Pirttila T (2007) Multiplexed proteomic analysis of oxidation and concentrations of cerebrospinal fluid proteins in Alzheimer disease. Clin Chem 53:657–665. doi:10.1373/clinchem.2006.078014

    Article  PubMed  CAS  Google Scholar 

  57. Krapfenbauer K, Engidawork E, Cairns N, Fountoulakis M, Lubec G (2003) Aberrant expression of peroxiredoxin subtypes in neurodegenerative disorders. Brain Res 967:152–160. doi:10.1016/S0006-8993(02)04243-9

    Article  PubMed  CAS  Google Scholar 

  58. le-Donne I, Milzani A, Gagliano N, Colombo R, Giustarini D, Rossi R (2008) Molecular mechanisms and potential clinical significance of S-glutathionylation. Antioxid Redox Signal 10:445–473. doi:10.1089/ars.2007.1716

    Article  CAS  Google Scholar 

  59. Leverenz JB, Umar I, Wang Q et al (2007) Proteomic identification of novel proteins in cortical Lewy bodies. Brain Pathol 17:139–145. doi:10.1111/j.1750-3639.2007.00048.x

    Article  PubMed  CAS  Google Scholar 

  60. Lia LJ, Cheng DM, Wang J et al (2004) Proteomic characterization of postmortem amyloid plaques isolated by laser capture microdissection. J Biol Chem 279:37061–37068. doi:10.1074/jbc.M403672200

    Article  CAS  Google Scholar 

  61. Liang WS, Dunckley T, Beach TG et al (2008) Altered neuronal gene expression in brain regions differentially affected by Alzheimer’s disease: a reference data set. Physiol Genomics 33:240–256. doi:10.1152/physiolgenomics.00242.2007

    Article  PubMed  CAS  Google Scholar 

  62. Lubec G, Krapfenbauer K, Fountoulakis M (2003) Proteomics in brain research: potentials and limitations. Prog Neurobiol 69:193–211. doi:10.1016/S0301-0082(03)00036-4

    Article  PubMed  CAS  Google Scholar 

  63. Mattila KM, Frey H (1994) Alzheimer brain proteins investigated by 2-dimensional gel-electrophoresis with immobilized pH gradients in the first dimension. Electrophoresis 15:721–725. doi:10.1002/elps.1150150199

    Article  PubMed  CAS  Google Scholar 

  64. Mattila KM, Frey H (1995) Two-dimensional analysis of qualitative and quantitative changes in blood-cell proteins in Alzheimer’s disease: search for extraneuronal markers. Appl Theor Electrophor 4:189–196

    PubMed  CAS  Google Scholar 

  65. McFarland MA, Ellis CE, Markey SP, Nussbaum RL (2008) Proteomics analysis identifies phosphorylation-dependent alpha-synuclein protein interactions. Mol Cell Proteomics 7:2123–2137. doi:10.1074/mcp.M800116-MCP200

    Article  PubMed  CAS  Google Scholar 

  66. McLuckey SA, Wells JM (2001) Mass analysis at the advent of the 21st century. Chem Rev 101:571–606. doi:10.1021/cr990087a

    Article  PubMed  CAS  Google Scholar 

  67. Meier-Ruge WA, Bertoni-Freddari C (1999) Mitochondrial genome lesions in the pathogenesis of sporadic Alzheimer’s disease. Gerontology 45:289–297. doi:10.1159/000022104

    Article  PubMed  CAS  Google Scholar 

  68. Mhyre TR, Loy R, Tariot PN et al (2008) Proteomic analysis of peripheral leukocytes in Alzheimer’s disease patients treated with divalproex sodium. Neurobiol Aging 29:1631–1643. doi:10.1016/j.neurobiolaging.2007.04.004

    Article  PubMed  CAS  Google Scholar 

  69. Molloy MP, Brzezinski EE, Hang JQ, McDowell MT, VanBogelen RA (2003) Overcoming technical variation and biological variation in quantitative proteomics. Proteomics 3:1912–1919. doi:10.1002/pmic.200300534

    Article  PubMed  CAS  Google Scholar 

  70. Müller T, Jung K, Ullrich A et al (2008) Disease state, age, sex, and post-mortem time-dependent expression of proteins in AD vs. control frontal cortex brain samples. Curr Alzheimer Res 5:562–571. doi:10.2174/156720508786898488

    Article  PubMed  Google Scholar 

  71. Nakamura S, Kawamata T, Akiguchi I, Kameyama M, Nakamura N, Kimura H (1990) Expression of monoamine oxidase-B activity in astrocytes of senile plaques. Acta Neuropathol 80:419–425. doi:10.1007/BF00307697

    Article  PubMed  CAS  Google Scholar 

  72. Newman SF, Sultana R, Perluigi M et al (2007) An increase in S-glutathionylated proteins in the Alzheimer’s disease inferior parietal lobule, a proteomics approach. J Neurosci Res 85:1506–1514. doi:10.1002/jnr.21275

    Article  PubMed  CAS  Google Scholar 

  73. Ofarrell PH (1975) High-resolution 2-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    CAS  Google Scholar 

  74. Palagi PM, Hernandez P, Walther D, Appel RD (2006) Proteome informatics I: Bioinformatics tools for processing experimental data. Proteomics 6:5435–5444. doi:10.1002/pmic.200600273

    Article  PubMed  CAS  Google Scholar 

  75. Portelius E, Zetterberg H, Andreasson U et al (2006) An Alzheimer’s disease-specific beta-amyloid fragment signature in cerebrospinal fluid. Neurosci Lett 409:215–219. doi:10.1016/j.neulet.2006.09.044

    Article  PubMed  CAS  Google Scholar 

  76. Portelius E, Hansson SF, Tran AJ et al (2008) Characterization of tau in cerebrospinal fluid using mass spectrometry. J Proteome Res 7:2114–2120. doi:10.1021/pr7008669

    Article  PubMed  CAS  Google Scholar 

  77. Pratico D, Clark CM, Liun F, Lee VYM, Trojanowski JQ (2002) Increase of brain oxidative stress in mild cognitive impairment: a possible predictor of Alzheimer disease. Arch Neurol 59:972–976. doi:10.1001/archneur.59.6.972

    Article  PubMed  Google Scholar 

  78. Puchades M, Hansson SF, Nilsson CL, Andreasen N, Blennow K, Davidsson P (2003) Proteomic studies of potential cerebrospinal fluid protein markers for Alzheimer’s disease. Brain Res Mol Brain Res 118:140–146. doi:10.1016/j.molbrainres.2003.08.005

    Article  PubMed  CAS  Google Scholar 

  79. Ray S, Britschgi M, Herbert C et al (2007) Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med 13:1359–1362. doi:10.1038/nm1653

    Article  PubMed  CAS  Google Scholar 

  80. Reed T, Pierce WM, Turner DM, Markesbery WR, Butterfield DA (2008) Proteomic identification of nitrated brain proteins in early Alzheimer’s disease inferior parietal lobule. J Cell Mol Med [Epub ahead of print]

  81. Ross PL, Huang YLN, Marchese JN et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169. doi:10.1074/mcp.M400129-MCP200

    Article  PubMed  CAS  Google Scholar 

  82. Ruetschi U, Zetterberg H, Podust VN et al (2005) Identification of CSF biomarkers for frontotemporal dementia using SELDI-TOF. Exp Neurol 196:273–281. doi:10.1016/j.expneurol.2005.08.002

    Article  PubMed  CAS  Google Scholar 

  83. Schagger H, Ohm TG (1995) Human diseases with defects in oxidative phosphorylation. 2. F1F0 Atp-synthase defects in Alzheimer disease revealed by blue native polyacrylamide-gel electrophoresis. Eur J Biochem 227:916–921. doi:10.1111/j.1432-1033.1995.tb20219.x

    Article  PubMed  CAS  Google Scholar 

  84. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68:850–858. doi:10.1021/ac950914h

    Article  PubMed  CAS  Google Scholar 

  85. Shiozaki A, Tsuji T, Kohno R et al (2004) Proteome analysis of brain proteins in Alzheimer’s disease: subproteomics following sequentially extracted protein preparation. J Alzheimers Dis 6:257–268

    PubMed  CAS  Google Scholar 

  86. Simonsen AH, McGuire J, Hansson O et al (2007) Novel panel of cerebrospinal fluid biomarkers for the prediction of progression to Alzheimer dementia in patients with mild cognitive impairment. Arch Neurol 64:366–370. doi:10.1001/archneur.64.3.366

    Article  PubMed  Google Scholar 

  87. Simonsen AH, McGuire J, Podust VN et al (2008) Identification of a novel panel of cerebrospinal fluid biomarkers for Alzheimer’s disease. Neurobiol Aging 29:961–968. doi:10.1016/j.neurobiolaging.2007.01.011

    Article  PubMed  CAS  Google Scholar 

  88. Sleno L, Volmer DA (2004) Ion activation methods for tandem mass spectrometry. J Mass Spectrom 39:1091–1112. doi:10.1002/jms.703

    Article  PubMed  CAS  Google Scholar 

  89. Smith CD, Carney JM, Starkereed PE et al (1991) Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci USA 88:10540–10543. doi:10.1073/pnas.88.23.10540

    Article  PubMed  CAS  Google Scholar 

  90. Stamper C, Siegel A, Liang WS et al (2008) Neuronal gene expression correlates of Parkinson’s disease with dementia. Mov Disord 23:1588–1595. doi:10.1002/mds.22184

    Article  PubMed  Google Scholar 

  91. Sultana R, Boyd-Kimball D, Poon HF et al (2006) Redox proteomics identification of oxidized proteins in Alzheimer’s disease hippocampus and cerebellum: an approach to understand pathological and biochemical alterations in AD. Neurobiol Aging 27:1564–1576. doi:10.1016/j.neurobiolaging.2005.09.021

    Article  PubMed  CAS  Google Scholar 

  92. Sultana R, Poon HF, Cai J et al (2006) Identification of nitrated proteins in Alzheimer’s disease brain using a redox proteomics approach. Neurobiol Dis 22:76–87. doi:10.1016/j.nbd.2005.10.004

    Article  PubMed  CAS  Google Scholar 

  93. Sultana R, Boyd-Kimball D, Cai J et al (2007) Proteomics analysis of the Alzheimer’s disease hippocampal proteome. J Alzheimers Dis 11:153–164

    PubMed  CAS  Google Scholar 

  94. Sultana R, Reed T, Perluigi M, Coccia R, Pierce WM, Butterfield DA (2007) Proteomic identification of nitrated brain proteins in amnestic mild cognitive impairment: a regional study. J Cell Mol Med 11:839–851. doi:10.1111/j.1582-4934.2007.00065.x

    Article  PubMed  CAS  Google Scholar 

  95. Tannu N, Hemby SE (2006) Quantitation in two-dimensional fluorescence difference gel electrophoresis: effect of protein fixation. Electrophoresis 27:2011–2015. doi:10.1002/elps.200500710

    Article  PubMed  CAS  Google Scholar 

  96. Thiede B, Hohenwarter W, Krah A et al (2005) Peptide mass fingerprinting. Methods 35:237–247. doi:10.1016/j.ymeth.2004.08.015

    Article  PubMed  CAS  Google Scholar 

  97. Tsuji T, Shiozaki A, Kohno R, Yoshizato K, Shimohama S (2002) Proteomic profiling and neurodegeneration in Alzheimer’s disease. Neurochem Res 27:1245–1253. doi:10.1023/A:1020941929414

    Article  PubMed  CAS  Google Scholar 

  98. Ueno I, Sakai T, Yamaoka M, Yoshida R, Tsugita A (2000) Analysis of blood plasma proteins in patients with Alzheimer’s disease by two-dimensional electrophoresis, sequence homology and immunodetection. Electrophoresis 21:1832–1845. doi:10.1002/(SICI)1522-2683(20000501)21:9<1832::AID-ELPS1832>3.0.CO;2-7

    Article  PubMed  CAS  Google Scholar 

  99. Utermann G, Hees M, Steinmetz A (1977) Polymorphism of Apolipoprotein-e and occurrence of dys-beta-lipoproteinemia in man. Nature 269:604–607. doi:10.1038/269604a0

    Article  PubMed  CAS  Google Scholar 

  100. Vlkolinsky R, Cairns N, Fountoulakis M, Lubec G (2001) Decreased brain levels of 2′, 3′-cyclic nucleotide-3′-phosphodiesterase in Down syndrome and Alzheimer’s disease. Neurobiol Aging 22:547–553. doi:10.1016/S0197-4580(01)00218-4

    Article  PubMed  CAS  Google Scholar 

  101. Wang Q, Woltjer RL, Cimino PJ et al (2005) Proteomic analysis of neurofibrillary tangles in Alzheimer disease identifies GAPDH as a detergent-insoluble paired helical filament in tau binding protein. FASEB J 19:869–871. doi:10.1096/fj.04-2370com

    Article  PubMed  CAS  Google Scholar 

  102. Wilson KE, Marouga R, Prime JE et al (2005) Comparative proteomic analysis using samples obtained with laser microdissection and saturation dye labelling. Proteomics 5:3851–3858. doi:10.1002/pmic.200401255

    Article  PubMed  CAS  Google Scholar 

  103. Winkler W, Zellner M, Diestinger M et al (2008) Biological variation of the platelet proteome in the elderly population and its implication for biomarker research. Mol Cell Proteomics 7:193–203. doi:10.1074/mcp.M700137-MCP200

    PubMed  CAS  Google Scholar 

  104. Wu WW, Wang GH, Baek SJ, Shen RF (2006) Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF. J Proteome Res 5:651–658. doi:10.1021/pr050405o

    Article  PubMed  CAS  Google Scholar 

  105. Yao Y, Taylor M, Davey F et al (2007) Interaction of amyloid binding alcohol dehydrogenase/A beta mediates up-regulation of peroxiredoxin II in the brains of Alzheimer’s disease patients and a transgenic Alzheimer’s disease mouse model. Mol Cell Neurosci 35:377–382. doi:10.1016/j.mcn.2007.03.013

    Article  PubMed  CAS  Google Scholar 

  106. Yoo BC, Fountoulakis M, Cairns N, Lubec G (2001) Changes of voltage-dependent anion-selective channel proteins VDAC1 and VDAC2 brain levels in patients with Alzheimer’s disease and Down syndrome. Electrophoresis 22:172–179. doi:10.1002/1522-2683(200101)22:1<172::AID-ELPS172>3.0.CO;2-P

    Article  PubMed  CAS  Google Scholar 

  107. Yoo BC, Kim SH, Cairns N, Fountoulakis M, Lubec G (2001) Deranged expression of molecular chaperones in brains of patients with Alzheimer’s disease. Biochem Biophys Res Commun 280:249–258. doi:10.1006/bbrc.2000.4109

    Article  PubMed  CAS  Google Scholar 

  108. Zannis VI, Breslow JL (1981) Human very low-density lipoprotein apolipoprotein-e isoprotein polymorphism is explained by genetic variation and posttranslational modification. Biochemistry 20:1033–1041. doi:10.1021/bi00507a059

    Article  PubMed  CAS  Google Scholar 

  109. Zhang RL, Barker L, Pinchev D et al (2004) Mining biomarkers in human sera using proteomic tools. Proteomics 4:244–256. doi:10.1002/pmic.200300495

    Article  PubMed  CAS  Google Scholar 

  110. Zhang J, Goodlett DR, Quinn JF et al (2005) Quantitative proteomics of cerebrospinal fluid from patients with Alzheimer disease. J Alzheimers Dis 7:125–133

    PubMed  CAS  Google Scholar 

  111. Zhang J, Sokal I, Peskind ER et al (2008) CSF multianalyte profile distinguishes Alzheimer and Parkinson diseases. Am J Clin Pathol 129:526–529. doi:10.1309/W01Y0B808EMEH12L

    Article  PubMed  CAS  Google Scholar 

  112. Zolg W (2006) The proteomic search for diagnostic biomarkers: lost in translation? Mol Cell Proteomics 5:1720–1726. doi:10.1074/mcp.R600001-MCP200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Kerstin Hof of Randox Laboratories (Crumlin, UK) and Claudine Donnelly for their critical proofreading and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Zellner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zellner, M., Veitinger, M. & Umlauf, E. The role of proteomics in dementia and Alzheimer’s disease. Acta Neuropathol 118, 181–195 (2009). https://doi.org/10.1007/s00401-009-0502-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-009-0502-7

Keywords

Navigation