Skip to main content

Advertisement

Log in

Formation of amyloid-β oligomers in brain vascular smooth muscle cells transiently exposed to iron-induced oxidative stress

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Vascular smooth muscle cells are involved in deposition of amyloid in brain blood vessels. Accumulation of amyloid-β peptide (Aβ) in cultured brain vascular smooth muscle cells that overexpress human amyloid-β precursor protein (APP) Swedish, is strongly enhanced by exposure to iron ions. We studied cellular accumulation of Aβ and APP processing in vascular smooth muscle cells during recovery after exposure to ferrous ions using cells cultured from Tg2576 mice. The treatment with ferrous ions for 24 and 48 h significantly increased the intracellular levels of ferric, but not ferrous iron. The treatment led to cellular accumulation of C-terminal fragments of APP and to a decreased secretion of APP, Aβ1–40, and Aβ1–42, all of which were quickly normalized in iron-free culture conditions. These effects of iron were neutralized by α-tocopherol, suggesting the role of oxygen reactive species in altered APP processing. Formation of abundant Aβ oligomers, mainly Aβ1–40 tetramers and pentamers, were detected in iron-treated cells, particularly during subsequent culture in iron-free media for up to 72 h. The data suggest that transient increases in local availability of iron in brain blood vessel walls in vivo, e.g., after microhemorhages, may trigger Aβ oligomerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alemany M, Stenborg A, Terent A, Sonninen P, Raininko R (2006) Coexistence of microhemorrhages and acute spontaneous brain hemorrhage: correlation with signs of microangiopathy and clinical data. Radiology 238:240–247. doi:10.1148/radiol.2381040551

    Article  PubMed  Google Scholar 

  2. Barnham KJ, Haeffner F, Ciccotosto GD, Curtain CC, Tew D, Mavros C, Beyreuther K, Carrington D, Masters CL, Cherny RA, Cappai R, Bush AI (2004) Tyrosine gated electron transfer is key to the toxic mechanism of Alzheimer’s disease beta-amyloid. FASEB J 18:1427–1429

    PubMed  CAS  Google Scholar 

  3. Bartzokis G, Tishler TA, Lu PH, Villablanca P, Altshuler LL, Carter M, Huang D, Edwards N, Mintz J (2007) Brain ferritin iron may influence age- and gender-related risks of neurodegeneration. Neurobiol Aging 28:414–423. doi:10.1016/j.neurobiolaging.2006.02.005

    Article  PubMed  CAS  Google Scholar 

  4. Butterfield DA, Castegna A, Lauderback CM, Drake J (2002) Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol Aging 23:655–664. doi:10.1016/S0197-4580(01)00340-2

    Article  PubMed  Google Scholar 

  5. Butterfield DA, Kanski J (2002) Methionine residue 35 is critical for the oxidative stress and neurotoxic properties of Alzheimer’s amyloid beta-peptide 1–42. Peptides 23:1299–1309. doi:10.1016/S0196-9781(02)00066-9

    Article  PubMed  CAS  Google Scholar 

  6. Carter P (1970) Spectrophotometric determination of serum iron at the submicrogram level with a new reagent (ferrozine). Anal Biochem 40:450–458. doi:10.1016/0003-2697(71)90405-2

    Article  Google Scholar 

  7. Catalano SM, Dodson EC, Henze DA, Joyce JG, Krafft GA, Kinney GG (2006) The role of amyloid-beta derived diffusible ligands (ADDLs) in Alzheimer’s disease. Curr Top Med Chem 6:597–608. doi:10.2174/156802606776743066

    Article  PubMed  CAS  Google Scholar 

  8. Chen JW, Chen GL, D’Souza MP, Murphy TL, August JT (1986) Lysosomal membrane glycoproteins: properties of LAMP-1 and LAMP-2. Biochem Soc Symp 61:97–112

    Google Scholar 

  9. Cole GM, Huynh TV, Saitoh T (1989) Evidence for lysosomal processing of amyloid β-protein precursor in cultured cells. Neurochem Res 4:933–939. doi:10.1007/BF00965926

    Article  Google Scholar 

  10. Coma M, Guix FX, Ill-Raga G, Uribesalgo I, Alameda F, Valverde MA, Muñoz FJ (2008) Oxidative stress triggers the amyloidogenic pathway in human vascular smooth muscle cells. Neurobiol Aging 29:969–980. doi:10.1016/j.neurobiolaging.2007.01.009

    Article  PubMed  CAS  Google Scholar 

  11. Cook DG, Forman MS, Sung JC, Leight S, Kolson DL, Iwatsubo T, Lee VM, Doms RW (1997) Alzheimer’s A beta (1–42) is generated in the endoplasmic reticulum/intermediate compartment of NT2N cells. Nat Med 3:1021–1023. doi:10.1038/nm0997-1021

    Article  PubMed  CAS  Google Scholar 

  12. Cullen K, Kócsi Z, Stone J (2006) Microvascular pathology in the aging human brain: evidence that senile plaques are sites of microhaemorrhages. Neurobiol Aging 27:1786–1796. doi:10.1016/j.neurobiolaging.2005.10.016

    Article  PubMed  CAS  Google Scholar 

  13. Davis-Salinas J, Saporito-Irwin SM, Cotman CW, Van Nostrand WE (1995) Amyloid beta-protein induces its own production in cultured degenerating cerebrovascular smooth muscle cells. J Neurochem 65:931–934

    Article  PubMed  CAS  Google Scholar 

  14. Deshpande A, Mina E, Glabe C, Busciglio J (2006) Different conformations of amyloid beta induce neurotoxicity by distinct mechanisms in human cortical neurons. J Neurosci 26:6011–6018. doi:10.1523/JNEUROSCI.1189-06.2006

    Article  PubMed  CAS  Google Scholar 

  15. Ditaranto K, Tekirian TL, Yang AJ (2001) Lysosomal membrane damage in soluble Aβ-mediated cell death in Alzheimer’s disease. Neurobiol Dis 8:19–31. doi:10.1006/nbdi.2000.0364

    Article  PubMed  CAS  Google Scholar 

  16. Frackowiak J, Zoltowska A, Wisniewski HM (1994) Non-fibrillar β-amyloid protein is associated with smooth muscle cells of vessel walls in Alzheimer disease. J Neuropathol Exp Neurol 53:637–645. doi:10.1097/00005072-199411000-00011

    Article  PubMed  CAS  Google Scholar 

  17. Frackowiak J, Mazur-Kolecka B, Wisniewski HM, Potempska A, Carroll RT, Emmerling MR, Kim KS (1995) Secretion and accumulation of β-protein by cultured vascular smooth muscle cells from old and young dogs. Brain Res 676:225–230. doi:10.1016/0006-8993(94)01465-T

    Article  PubMed  CAS  Google Scholar 

  18. Frackowiak J, Miller DL, Potempska A, Sukontasup T, Mazur-Kolecka B (2003) Secretion and accumulation of Aβ by brain vascular smooth muscle cells from AβPP-Swedish transgenic mice. J Neuropathol Exp Neurol 62:685–696

    PubMed  CAS  Google Scholar 

  19. Frackowiak J, Sukontasup T, Potempska A, Mazur-Kolecka B (2004) Lysosomal deposition of Aβ in cultures of brain vascular smooth muscle cells is enhanced by iron. Brain Res 1002:67–75. doi:10.1016/j.brainres.2003.12.015

    Article  PubMed  CAS  Google Scholar 

  20. Garzon-Rodriguez W, Yatsimirsky AK, Glabe CG (1999) Binding of Zn(II), Cu(II), and Fe(II) ions to Alzheimer’s A beta peptide studied by fluorescence. Bioorg Med Chem Lett 9:2243–2248. doi:10.1016/S0960-894X(99)00357-1

    Article  PubMed  CAS  Google Scholar 

  21. Greenfield JP, Tsai J, Gouras GK, Hai B, Thinakaran G, Checler F, Sisodia SS, Greengard P, Xu H (1999) Endoplasmic reticulum and trans-Golgi network generate distinct populations of Alzheimer β-amyloid peptides. Proc Natl Acad Sci USA 96:742–747. doi:10.1073/pnas.96.2.742

    Article  PubMed  CAS  Google Scholar 

  22. Gong Y, Chang L, Viola KL, Lacor PN, Lambert MP, Finch CE, Krafft GA, Klein WL (2003) Alzheimer’s disease-affected brain: presence of oligomeric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci USA 100:10417–10422. doi:10.1073/pnas.1834302100

    Article  PubMed  CAS  Google Scholar 

  23. Gouras GK, Tsai J, Naslund J, Vincent B, Edgar M, Checler F, Greenfield JP, Haroutunian V, Buxbaum JD, Greengard P, Relkin NR (2000) Intraneuronal Abeta42 accumulation in human brain. Am J Pathol 156:15–20

    PubMed  CAS  Google Scholar 

  24. Hartmann T, Bieger SC, Bruhl B, Tienari PJ, Ida N, Allsop D, Roberts GW, Masters CL, Dotti CG, Unsicker K, Beyreuther K (1997) Distinct sites of intracellular production for Alzheimer’s disease A beta 40/42 amyloid peptides. Nat Med 3:1016–1020. doi:10.1038/nm0997-1016

    Article  PubMed  CAS  Google Scholar 

  25. Hook VY, Reisine TD (2003) Cysteine proteases are the major beta-secretase in the regulated secretory pathway that provides most of the beta-amyloid in Alzheimer’s disease: role of BACE 1 in the constitutive secretory pathway. J Neurosci Res 74:393–405. doi:10.1002/jnr.10784

    Article  PubMed  CAS  Google Scholar 

  26. Hsiao KK, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, Aβ elevation and amyloid plaques in transgenic mice. Science 274:99–102. doi:10.1126/science.274.5284.99

    Article  PubMed  CAS  Google Scholar 

  27. Hua Y, Nakamura T, Keep RF, Wu J, Schallert T, Hoff JT, Xi G (2006) Long-term effects of experimental intracerebral hemorrhage: the role of iron. J Neurosurg 104:305–312. doi:10.3171/jns.2006.104.2.305

    Article  PubMed  CAS  Google Scholar 

  28. Huang X, Atwood CS, Hartshorn MA, Multhaup G, Goldstein LE, Scarpa RC, Cuajungco MP, Gray DN, Lim J, Moir RD, Tanzi RE, Bush AI (1999) The A beta peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 38:7609–7616. doi:10.1021/bi990438f

    Article  PubMed  CAS  Google Scholar 

  29. Klein WL (2002) Abeta toxicity in Alzheimer’s disease: globular oligomers (ADDLs) as new vaccine and drug targets. Neurochem Int 41:345–352. doi:10.1016/S0197-0186(02)00050-5

    Article  PubMed  CAS  Google Scholar 

  30. Klug GM, Losic D, Subasinghe SS, Aguilar MI, Martin LL, Small DH (2003) Beta-amyloid protein oligomers induced by metal ions and acid pH are distinct from those generated by slow spontaneous ageing at neutral pH. Eur J Biochem 270:4282–4293. doi:10.1046/j.1432-1033.2003.03815.x

    Article  PubMed  CAS  Google Scholar 

  31. LeBlanc AC, Goodyear CG (1999) Role of endoplasmic reticulum, endosomal–lysosomal compartments, and microtubules in amyloid precursor protein metabolism of human neurons. J Neurochem 72:1832–1842. doi:10.1046/j.1471-4159.1999.0721832.x

    Article  PubMed  CAS  Google Scholar 

  32. Loske C, Gerdemann A, Schepl W, Wycislo M, Schinzel R, Palm D, Riederer P, Munch G (2000) Transition metal-mediated glycoxidation accelerates cross-linking of beta-amyloid peptide. Eur J Biochem 267:4171–4178. doi:10.1046/j.1432-1327.2000.01452.x

    Article  PubMed  CAS  Google Scholar 

  33. Mandal PK, Pettegrew JW (2004) Alzheimer’s disease: soluble oligomeric Abeta(1–40) peptide in membrane mimic environment from solution NMR and circular dichroism studies. Neurochem Res 29:2267–2272. doi:10.1007/s11064-004-7035-1

    Article  PubMed  CAS  Google Scholar 

  34. Mantyh PW, Ghilardi JR, Rogers S, DeMaster E, Allen CJ, Stimson ER, Maggio JE (1993) Aluminum, iron, and zinc ions promote aggregation of physiological concentrations of β-amyloid peptide. J Neurochem 61:1171–1174. doi:10.1111/j.1471-4159.1993.tb03639.x

    Article  PubMed  CAS  Google Scholar 

  35. Maynard CJ, Cappai R, Volitakis I, Cherny RA, White AR, Beyreuther K, Masters CL, Bush AI, Li QX (2002) Overexpression of Alzheimer’s disease amyloid-beta opposes the age-dependent elevations of brain copper and iron. J Biol Chem 277:44670–44676. doi:10.1074/jbc.M204379200

    Article  PubMed  CAS  Google Scholar 

  36. Mazur-Kolecka B, Frackowiak J, LeVine H, Haske T, Evans L, Sukontasup T, Golabek A (2003) TGF-beta1 enhances formation of cellular A beta/ApoE deposits in vascular myocytes. Neurobiol Aging 24:355–364. doi:10.1016/S0197-4580(02)00095-7

    Article  PubMed  CAS  Google Scholar 

  37. Mazur-Kolecka B, Kowal D, Sukontasup T, Dickson D, Frackowiak J (2004) The effect of oxidative stress on APP production in cells engaged in β-amyloidosis is related to apoE genotype. Acta Neuropathol 108:287–294. doi:10.1007/s00401-004-0890-7

    Article  PubMed  CAS  Google Scholar 

  38. McLaurin J, Yang D, Fraser PE (2000) Review: modulating factors in amyloid-beta formation. J Struct Biol 130:259–270. doi:10.1006/jsbi.2000.4289

    Article  PubMed  CAS  Google Scholar 

  39. Mehta PD, Pirttila T, Patrick BA, Barshatzky M, Mehta SP (2001) Amyloid beta protein 1–40 and 1–42 levels in matched cerebrospinal fluid and plasma from patients with Alzheimer disease. Neurosci Lett 304:102–106. doi:10.1016/S0304-3940(01)01754-2

    Article  PubMed  CAS  Google Scholar 

  40. Miller DL, Papayannopoulos IA, Styles J, Bobin SA, Lin YY, Biemann K, Iqbal K (1993) Peptide compositions of the cerebrovascular and senile plaque core amyloid deposits of Alzheimer’s disease. Arch Biochem Biophys 301:41–52. doi:10.1006/abbi.1993.1112

    Article  PubMed  CAS  Google Scholar 

  41. Miller DL, Potempska A, Mehta P (2007) Humoral immune responses to peptides derived from the beta-amyloid peptide C-terminal sequence. Amyloid 14:39–50. doi:10.1080/13506120601116500

    Article  PubMed  CAS  Google Scholar 

  42. Mok SS, Evin G, Li Q-X, Smith AI, Beyreuther K, Masters CL, Small DH (1997) A novel metalloproteinase in rat brain cleaves the amyloid precursor protein of Alzheimer’s disease generating amyloidogenic fragments. Biochemistry 36:156–163. doi:10.1021/bi961848w

    Article  PubMed  CAS  Google Scholar 

  43. Morris CM, Kerwin JM, Edwardson JA (1994) Non-haem iron histochemistry of the normal and Alzheimer’s disease hippocampus. Neurodegeneration 3:267–275

    PubMed  CAS  Google Scholar 

  44. Palmblad M, Westlind-Danielsson A, Bergquist J (2002) Oxidation of methionine 35 attenuates formation of amyloid β-peptide 1–40 oligomers. J Biol Chem 277:19506–19510. doi:10.1074/jbc.M112218200

    Article  PubMed  CAS  Google Scholar 

  45. Petrat F, de Groot H, Sustmann R, Rauen U (2002) The chelatable iron pool in living cells: a methodically defined quantity. Biol Chem 383:489–502. doi:10.1515/BC.2002.051

    Article  PubMed  CAS  Google Scholar 

  46. Potempska A, Mack K, Mehta P, Kim KS, Miller DL (1999) Quantification of sub-femtomole amount of Alzheimer amyloid β peptides. Amyloid 6:14–21

    PubMed  CAS  Google Scholar 

  47. Randell EW, Parkes JG, Olivieri NF, Templeton DM (1994) Uptake of non-transferrin-bound iron by both reductive and nonreductive processes is modulated by intracellular iron. J Biol Chem 269:16046–16053

    PubMed  CAS  Google Scholar 

  48. Rottkamp CA, Raina AK, Zhu X, Gaier E, Bush AI, Atwood CS, Chevion M, Perry G, Smith MA (2001) Redox-active iron mediates amyloid-beta toxicity. Free Radic Biol Med 30:447–450. doi:10.1016/S0891-5849(00)00494-9

    Article  PubMed  CAS  Google Scholar 

  49. Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL, Selkoe DJ (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14:837–842. doi:10.1038/nm1782

    Article  PubMed  CAS  Google Scholar 

  50. Siegel SJ, Bieschke J, Powers ET, Kelly JW (2007) The oxidative stress metabolite 4-hydroxynonenal promotes Alzheimer protofibril formation. Biochemistry 46:1503–1510. doi:10.1021/bi061853s

    Article  PubMed  CAS  Google Scholar 

  51. Stewart PA, Hayakawa K, Akers MA, Vinters HV (1992) A morphometric study of the blood–brain barrier in Alzheimer’s disease. Lab Invest 67:734–742

    PubMed  CAS  Google Scholar 

  52. Stine WB Jr, Dahlgren KN, Krafft GA, LaDu MJ (2003) In vitro characterization of conditions for amyloid-beta peptide oligomerization and fibrillogenesis. J Biol Chem 278:11612–11622. doi:10.1074/jbc.M210207200

    Article  PubMed  CAS  Google Scholar 

  53. Takahashi RH, Almeida CG, Kearney PF, Yu F, Lin MT, Milner TA, Gouras GK (2004) Oligomerization of Alzheimer’s beta-amyloid within processes and synapses of cultured neurons and brain. J Neurosci 24:3592–3599. doi:10.1523/JNEUROSCI.5167-03.2004

    Article  PubMed  CAS  Google Scholar 

  54. Tjernberg LO, Naslund J, Thyberg J, Gandy SE, Ternius L, Nordstedt C (1997) Generation of Alzheimer amyloid β peptide through nonspecific proteolysis. J Biol Chem 272:1870–1875. doi:10.1074/jbc.272.19.12601

    Article  PubMed  CAS  Google Scholar 

  55. Townsend M, Shankar GM, Mehta T, Walsh DM, Selkoe DJ (2006) Effects of secreted oligomers of amyloid beta-protein on hippocampal synaptic plasticity: a potent role for trimers. J Physiol 572:477–492. doi:10.1113/jphysiol.2005.103754

    Article  PubMed  CAS  Google Scholar 

  56. Tseng BP, Green KN, Chan JL, Blurton-Jones M, LaFerla FM (2008) Aβ inhibits the proteasome and enhances amyloid and tau accumulation. Neurobiol Aging 29:1607–1618. doi:10.1016/j.neurobiolaging.2007.04.014

    Article  PubMed  CAS  Google Scholar 

  57. Urbanc B, Cruz L, Yun S, Buldyrev SV, Bitan G, Teplow DB, Stanley HE (2004) In silico study of amyloid beta-protein folding and oligomerization. Proc Natl Acad Sci USA 101:17345–17350. doi:10.1073/pnas.0408153101

    Article  PubMed  CAS  Google Scholar 

  58. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC, Collins F, Treanor J, Rogers G, Citron M (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–741. doi:10.1126/science.286.5440.735

    Article  PubMed  CAS  Google Scholar 

  59. Vinters HV, Secor DL, Read SL, Frazee JG, Tomiyasu U, Stanley T, Ferreiro J, Akers MA (1994) Microvasculature in brain biopsy specimens from patients with Alzheimer’s disease: an immunohistochemical and ultrastructural study. Ultrastruct Pathol 18:333–348. doi:10.3109/01913129409023202

    Article  PubMed  CAS  Google Scholar 

  60. Walsh DM, Tseng BP, Rydel RE, Podlisny MB, Selkoe DJ (2000) The oligomerization of amyloid beta-protein begins intracellularly in cells derived from human brain. Biochemistry 39:10831–10839. doi:10.1021/bi001048s

    Article  PubMed  CAS  Google Scholar 

  61. Wan S, Hua Y, Keep RF, Hoff JT, Xi G (2006) Deferoxamine reduces CSF free iron levels following intracerebral hemorrhage. Acta Neurochir Suppl (Wien) 96:199–202. doi:10.1007/3-211-30714-1_43

    Article  CAS  Google Scholar 

  62. Weller RO, Subash M, Preston SD, Mazanti I, Carare RO (2008) Perivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer’s disease. Brain Pathol 18:253–266. doi:10.1111/j.1750-3639.2008.00133.x

    Article  PubMed  CAS  Google Scholar 

  63. Wisniewski HM, Wegiel J (1994) β-amyloid formation by myocytes of leptomeningeal vessels. Acta Neuropathol 87:233–241. doi:10.1007/BF00296738

    Article  PubMed  CAS  Google Scholar 

  64. Wu J, Hua Y, Keep RF, Nakamura T, Hoff JT, Xi G (2003) Iron and iron-handling proteins in the brain after intracerebral hemorrhage. Stroke 34:2964–2969. doi:10.1161/01.STR.0000103140.52838.45

    Article  PubMed  CAS  Google Scholar 

  65. Yamaguchi H (1992) Beta amyloid is focally deposited within the outer basement membrane in the amyloid angiopathy of Alzheimer’s disease: an immunoelectron microscopic study. Am J Pathol 141:249–259

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Pankaj Mehta (IBRDD, Staten Island, NY) for antibody R57, and Dr. Thomas August and Developmental Studies Hybridoma Bank (University of Iowa, IA) for mAb LAMP-1, developed under the auspices of the NICHD and maintained by the University of Iowa, Department of Biological Sciences (Iowa City, IA 52242). This study was supported with funds from the New York State Office of Mental Retardation and Developmental Disabilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz Frackowiak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frackowiak, J., Potempska, A. & Mazur-Kolecka, B. Formation of amyloid-β oligomers in brain vascular smooth muscle cells transiently exposed to iron-induced oxidative stress. Acta Neuropathol 117, 557–567 (2009). https://doi.org/10.1007/s00401-009-0497-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-009-0497-0

Keywords

Navigation