Skip to main content
Log in

NSF, Unc-18-1, dynamin-1 and HSP90 are inclusion body components in neuronal intranuclear inclusion disease identified by anti-SUMO-1-immunocapture

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Neuronal intranuclear inclusion disease, a progressive ataxia that may be familial or sporadic, is characterized by numerous neuronal intranuclear inclusion bodies similar to those found in polyglutamine repeat diseases. Previously, we found that the intranuclear inclusion bodies are intensely immunopositive for SUMO-1, a protein which covalently conjugates to other proteins in a similar way to ubiquitin. To identify the SUMO-1-associated proteins in the inclusion bodies, we isolated intranuclear inclusion bodies from fresh, frozen brain tissue of a case with familial neuronal intranuclear inclusion disease and solubilized the proteins. SUMO-1-associated inclusion body proteins were then immunocaptured using an anti-SUMO-1 antibody. The proteins, NSF, dynamin-1 and Unc-18-1 (rbSEC1), involved in membrane trafficking of proteins, and the chaperone HSP90, were identified following anti-SUMO-1-immunocapture by using tandem mass spectrometry and database searching. Immunohistochemistry of brain sections and crude brain homogenates of three cases of familial neuronal intranuclear inclusion disease confirmed the presence of these proteins in intranuclear inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Paulson HL, Bonini NM, Roth KA (2000) Polyglutamine disease and neuronal cell death. Proc Natl Acad Sci USA 97:12957–12958. doi:10.1073/pnas.210395797

    Article  PubMed  CAS  Google Scholar 

  2. Trojanowski JQ, Lee VM (2003) Parkinson’s disease and related alpha-synucleinopathies are brain amyloidoses. Ann N Y Acad Sci 991:107–110

    Article  PubMed  CAS  Google Scholar 

  3. Kimber TE, Blumbergs PC, Rice JP, Hallpike JF, Edis R, Thompson PD, Suthers G (1998) Familial neuronal intranuclear inclusion disease with ubiquitin positive inclusions. J Neurol Sci 160:33–40. doi:10.1016/S0022-510X(98)00169-5

    Article  PubMed  CAS  Google Scholar 

  4. Takahashi J, Junici T, Arai K, Funata N (2001) Recruitment of non-expanded polyglutamine proteins to intranuclear aggregates in neuronal intranuclear hyaline inclusion disease. J Neuropathol Exp Neurol 60:369–375

    PubMed  CAS  Google Scholar 

  5. Gatchel JR, Zoghbi HY (2005) Diseases of unstable repeat expansion: mechanisms and common principles. Nat Rev Genet 6:743–755. doi:10.1038/nrg1691

    Article  PubMed  CAS  Google Scholar 

  6. Nucifora FC, Sasaki M, Peters MF, Huang H, Cooper JK, Yamada M, Takahashi H, Tsuji S, Troncoso J, Dawson V, Dawson TM, Ross CA (2001) Interference by Huntingtin and Atrophin-1 with CBP-mediated transcription leading to cellular toxicity. Science 291:2423–2428. doi:10.1126/science.1056784

    Article  PubMed  CAS  Google Scholar 

  7. Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292:1552–1555. doi:10.1126/science.292.5521.1552

    Article  PubMed  CAS  Google Scholar 

  8. Giasson BI, Lee VM (2003) Are ubiquitination pathways central to Parkinson’s disease? Cell 114:1–8. doi:10.1016/S0092-8674(03)00509-9

    Article  PubMed  CAS  Google Scholar 

  9. Moore DJ, Dawson VL, Dawson TM (2003) Role for the ubiquitin-proteasome system in Parkinson’s disease and other neurodegenerative brain amyloidoses. Neuromolecular Med 4:95–108. doi:10.1385/NMM:4:1-2:95

    Article  PubMed  Google Scholar 

  10. Pountney DL, Chegini F, Shen X, Blumbergs PC, Gai WP (2005) SUMO-1 marks subdomains within glial cytoplasmic inclusions of multiple system atrophy. Neurosci Lett 381:74–79. doi:10.1016/j.neulet.2005.02.013

    Article  PubMed  CAS  Google Scholar 

  11. Pountney DL, Huang Y, Burns RJ, Haan E, Thompson PD, Blumbergs PC, Gai WP (2003) SUMO-1 marks the nuclear inclusions in familial neuronal intranuclear inclusion disease. Exp Neurol 184:436–446. doi:10.1016/j.expneurol.2003.07.004

    Article  PubMed  CAS  Google Scholar 

  12. Mackenzie IR, Baker M, West G, Woulfe J, Qadi N, Gass J, Cannon A, Adamson J, Feldman H, Lindholm C, Melquist S, Pettman R, Sadovnick AD, Dwosh E, Whiteheart SW, Hutton M, Pickering-Brown SM (2006) A family with tau-negative frontotemporal dementia and neuronal intranuclear inclusions linked to chromosome 17. Brain 129:853–867. doi:10.1093/brain/awh724

    Article  PubMed  Google Scholar 

  13. Steffan JS, Agrawal N, Pallos J, Rockabrand E, Trotman LC, Slepko N, Illes K, Lukacsovich T, Zhu YZ, Cattaneo E, Pandolfi PP, Thompson LM, Marsh JL (2004) SUMO modification of Huntingtin and Huntington’s disease pathology. Science 304:100–104. doi:10.1126/science.1092194

    Article  PubMed  CAS  Google Scholar 

  14. Ueda H, Goto J, Hashida H, Lin X, Oyanagi K, Kawano H, Zoghbi HY, Kanazawa I, Okazawa H (2002) Enhanced SUMOylation in polyglutamine diseases. Biochem Biophys Res Commun 293:307–313. doi:10.1016/S0006-291X(02)00211-5

    Article  PubMed  CAS  Google Scholar 

  15. Terashima T, Kawai H, Fujitani M, Maeda K, Yasuda H (2002) SUMO-1 co-localized with mutant atrophin-1 with expanded polyglutamines accelerates intranuclear aggregation and cell death. Neuroreport 13:2359–2364. doi:10.1097/00001756-200212030-00038

    Article  PubMed  CAS  Google Scholar 

  16. Riley BE, Zoghbi HY, Orr HT (2005) SUMOylation of the polyglutamine repeat protein, ataxin-1, is dependent on a functional nuclear localization signal. J Biol Chem 280:21942–21948. doi:10.1074/jbc.M501677200

    Article  PubMed  CAS  Google Scholar 

  17. Dorval V, Fraser PE (2006) Small ubiquitin-like modifier (SUMO) modification of natively unfolded proteins tau and alpha-synuclein. J Biol Chem 281:9919–9924. doi:10.1074/jbc.M510127200

    Article  PubMed  CAS  Google Scholar 

  18. Dorval V, Fraser PE (2007) SUMO on the road to neurodegeneration. Biochim Biophys Acta 1773:694–706. doi:10.1016/j.bbamcr.2007.03.017

    Article  PubMed  CAS  Google Scholar 

  19. Dasso M (2008) Emerging roles of the SUMO pathway in mitosis. Cell Div 3:5. doi:10.1186/1747-1028-3-5

    Article  PubMed  CAS  Google Scholar 

  20. Martin S, Wilkinson KA, Nishimune A, Henley JM (2007) Emerging extranuclear roles of protein SUMOylation in neuronal function and dysfunction. Nat Rev Neurosci 8:948–959. doi:10.1038/nrn2276

    Article  PubMed  CAS  Google Scholar 

  21. Meulmeester E, Melchior F (2008) Cell biology: SUMO. Nature 452:709–711. doi:10.1038/452709a

    Article  PubMed  CAS  Google Scholar 

  22. Lieberman AP (2004) SUMO, a ubiquitin-like modifier implicated in neurodegeneration. Exp Neurol 185:204–207. doi:10.1016/j.expneurol.2003.10.009

    Article  PubMed  CAS  Google Scholar 

  23. Dohmen RJ (2004) SUMO protein modification. Biochim Biophys Acta 1695:113–131. doi:10.1016/j.bbamcr.2004.09.021

    Article  PubMed  CAS  Google Scholar 

  24. Bossis G, Melchior F (2006) SUMO: regulating the regulator. Cell Div 1:13. doi:10.1186/1747-1028-1-13

    Article  PubMed  CAS  Google Scholar 

  25. Hodges M, Tissot C, Howe K, Grimwade D, Freemont PS (1998) Structure, organization, and dynamics of promyelocytic leukemia protein nuclear bodies. Am J Hum Genet 63:297–304. doi:10.1086/301991

    Article  PubMed  CAS  Google Scholar 

  26. Harder Z, Zunino R, McBride H (2004) Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Curr Biol 14:340–345

    PubMed  CAS  Google Scholar 

  27. Mishra RK, Jatiani SS, Kumar A, Simhadri VR, Hosur RV, Mittal R (2004) Dynamin interacts with members of the sumoylation machinery. J Biol Chem 279:31445–31454. doi:10.1074/jbc.M402911200

    Article  PubMed  CAS  Google Scholar 

  28. Scarr E, Gray L, Keriakous D, Robinson PJ, Dean B (2006) Increased levels of SNAP-25 and synaptophysin in the dorsolateral prefrontal cortex in bipolar I disorder. Bipolar Disord 8:133–143. doi:10.1111/j.1399-5618.2006.00300.x

    Article  PubMed  CAS  Google Scholar 

  29. Perkins DN, Pappin DJC, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567. doi:10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2

    Article  PubMed  CAS  Google Scholar 

  30. Kerscher O (2007) SUMO junction—what’s your function? New insights through SUMO-interacting motifs. EMBO Rep 8:550–555. doi:10.1038/sj.embor.7400980

    Article  PubMed  CAS  Google Scholar 

  31. Panse VG, Hardeland U, Werner T, Kuster B, Hurt E (2004) A proteome-wide approach identifies sumoylated substrate proteins in yeast. J Biol Chem 279:41346–41351. doi:10.1074/jbc.M407950200

    Article  PubMed  CAS  Google Scholar 

  32. Ganesan AK, Kho Y, Kim SC, Chen Y, Zhao Y, White M (2007) Broad spectrum identification of SUMO substrates in melanoma cells. Proteomics 7:1–6. doi:10.1002/pmic.200600971

    Article  CAS  Google Scholar 

  33. Denison C, Rudner AD, Gerber SA, Bakalarski CE, Moazed D, Gygi SP (2005) A proteomic strategy for gaining insights into protein sumoylation in yeast. Mol Cell Proteomics 4:246–254. doi:10.1074/mcp.M400154-MCP200

    Article  PubMed  CAS  Google Scholar 

  34. Navascués J, Bengoechea R, Tapia O, Vaqué JP, Lafarga M, Berciano MT (2007) Characterization of a new SUMO-1 nuclear body (SNB) enriched in pCREB, CBP, c-Jun in neuron-like UR61 cells. Chromosoma 116:441–451. doi:10.1007/s00412-007-0107-7

    Article  PubMed  CAS  Google Scholar 

  35. Takahashi-Fujigasaki J, Arai K, Funata N, Fujigasaki H (2006) SUMOylation substrates in neuronal intranuclear inclusion disease. Neuropathol Appl Neurobiol 32:92–100. doi:10.1111/j.1365-2990.2005.00705.x

    Article  PubMed  CAS  Google Scholar 

  36. Murthy VN, De Camilli P (2003) Cell biology of the presynaptic terminal. Annu Rev Neurosci 26:701–728. doi:10.1146/annurev.neuro.26.041002.131445

    Article  PubMed  CAS  Google Scholar 

  37. Jahn R, Lang T, Sudhof TC (2003) Membrane fusion. Cell 112:519–533. doi:10.1016/S0092-8674(03)00112-0

    Article  PubMed  CAS  Google Scholar 

  38. Dulubova I, Khvotchev M, Liu S, Huryeva I, Sudhof TC, Rizo J (2007) Munc18-1 binds directly to the neuronal SNARE complex. Proc Natl Acad Sci USA 104:2697–2702. doi:10.1073/pnas.0611318104

    Article  PubMed  CAS  Google Scholar 

  39. Takahashi M, Iseki E, Kosaka K (2000) Cdk5 and munc-18/p67 co-localization in early stage neurofibrillary tangles-bearing neurons in Alzheimer type dementia brains. J Neurol Sci 172:63–69. doi:10.1016/S0022-510X(99)00291-9

    Article  PubMed  CAS  Google Scholar 

  40. Ho CS, Marinescu V, Steinhilb ML, Gaut JR, Turner RS, Stuenkel EL (2002) Synergistic effects of Munc18a and X11 proteins on amyloid precursor protein metabolism. J Biol Chem 277:27021–27028. doi:10.1074/jbc.M201823200

    Article  PubMed  CAS  Google Scholar 

  41. Kim Y, Chang S (2006) Ever-expanding network of dynamin interacting proteins. Mol Neurobiol 34:129–136. doi:10.1385/MN:34:2:129

    Article  PubMed  CAS  Google Scholar 

  42. Ferguson SM, Brasnjo G, Hayashi M, Wölfel M, Collesi C, Giovedi S, Raimondi A, Gong LW, Ariel P, Paradise S, O’toole E, Flavell R, Cremona O, Miesenböck G, Ryan TA, De Camilli P (2007) A selective activity-dependent requirement for dynamin 1 in synaptic vesicle endocytosis. Science 316:570–574. doi:10.1126/science.1140621

    Article  PubMed  CAS  Google Scholar 

  43. Waza M, Adachi H, Katsuno M, Minamiyama M, Tanaka F, Doyu M, Sobue G (2006) Modulation of HSP90 function in neurodegenerative disorders: a molecular-targeted therapy against disease-causing protein. J Mol Med 84:635–646. doi:10.1007/s00109-006-0066-0

    Article  PubMed  CAS  Google Scholar 

  44. Agarraberes FA, Dice JF (2001) A molecular chaperone complex at the lysosomal membrane is required for protein translocation. J Cell Sci 114:2491–2499

    PubMed  CAS  Google Scholar 

  45. Sampson DA, Wang M, Matunis MJ (2001) The SUMO-1 consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. J Biol Chem 276:21664–21669. doi:10.1074/jbc.M100006200

    Article  PubMed  CAS  Google Scholar 

  46. Hecker CM, Rabiller M, Haglund K, Bayer P, Dikic I (2006) Specification of SUMO1- and SUMO2-interacting motifs. J Biol Chem 281:16117–16127. doi:10.1074/jbc.M512757200

    Article  PubMed  CAS  Google Scholar 

  47. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D (2004) Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305:1292–1295. doi:10.1126/science.1101738

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the US National Ataxia Foundation, Griffith Institute of Health and Medical Research and the Australian National Health and Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean L. Pountney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pountney, D.L., Raftery, M.J., Chegini, F. et al. NSF, Unc-18-1, dynamin-1 and HSP90 are inclusion body components in neuronal intranuclear inclusion disease identified by anti-SUMO-1-immunocapture. Acta Neuropathol 116, 603–614 (2008). https://doi.org/10.1007/s00401-008-0437-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-008-0437-4

Keywords

Navigation