Skip to main content

Advertisement

Log in

Systematic immunohistochemical profiling of 378 brain tumors with 37 antibodies using tissue microarray technology

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

We performed a systematic immunohistochemical study on 378 brain tumors using 37 antibodies and tissue microarray (TMA) technology. The aim of this study was to find new diagnostic biomarkers using antibodies established in our laboratory. Our TMA consisted of a grid of 1.5-mm cores that were extracted from individual donor blocks. Staining for each antibody was scored using a three-point system. We used hierarchical clustering analysis to interpret these data, which resulted in separation of all the brain tumors into seven groups. Although there were some exceptions, cases with the same histological diagnosis were generally grouped together. We then carried out statistical analyses to find the most useful antibodies for grouping of brain tumors. Ten antibodies [glial fibrillary acidic protein (GFAP), Olig2, vimentin, epithelial membrane antigen (EMA), cytokeratin (AE1/AE3), alpha-internexin, nestin, pinealocytes PP5, aquaporin-4 (AQP4) M13d and AQP4M13e] discriminated between astrocytomas and oligodendroglial tumors. Six antibodies [EMA, AE1/AE3, TUJ1, nestin, neurofilament protein-MH (NF-MH) and perivascular cells GP-1] showed significant differences between high-grade and low-grade gliomas. Our data have revealed new antibodies with potential diagnostic utility (Olig2, PP5, GP-1) and demonstrate that TMA technology is highly useful for evaluating newly established antibodies in brain-tumor research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arai H, Hirato J, Nakazato Y (1998) A novel marker of Schwann cells and myelin of the peripheral nervous system. Pathol Int 48:206–214

    PubMed  CAS  Google Scholar 

  2. Bubendorf L, Kononen J, Koivisto P, Schraml P, Moch H, Gasser TC, Willi N, Mihatsch MJ, Sauter G, Kallioniemi OP (1999) Survey of gene amplifications during prostate cancer progression by high-throughout fluorescence in situ hybridization on tissue microarrays. Cancer Res 59:803–806

    PubMed  CAS  Google Scholar 

  3. DiVito KA, Charette LA, Rimm DL, Camp RL (2004) Long-term preservation of antigenicity on tissue microarrays. Lab Invest 84:1071–1078

    Article  PubMed  CAS  Google Scholar 

  4. Fejzo MS, Slamon DJ (2001) Frozen tumor tissue microarray technology for analysis of tumor RNA, DNA, and proteins. Am J Pathol 159:1645–1650

    CAS  Google Scholar 

  5. Fuller CE, Wang H, Zhang W, Fuller GN, Perry A (2002) High-throughput molecular profiling of high-grade astrocytomas: the utility of fluorescence in situ hybridization on tissue microarrays (TMA-FISH). J Neuropathol Exp Neurol 61:1078–1084

    PubMed  CAS  Google Scholar 

  6. Hasselblatt M, Paulus W (2003) Sensitivity and specificity of epithelial membrane antigen staining patterns in ependymomas. Acta Neuropathol (Berl) 106:385–388

    Article  Google Scholar 

  7. Hoos A, Cordon-Cardo C (2001) Tissue microarray profiling of cancer specimens and cell lines: opportunities and limitations. Lab Invest 81:1331–1338

    PubMed  CAS  Google Scholar 

  8. Jeuken JW, von Deimling A, Wesseling P (2004) Molecular pathogenesis of oligodendroglial tumors. J Neurooncol 70:161–181

    Article  PubMed  Google Scholar 

  9. Katsetos CD, Del Valle L, Geddes JF, Assimakopoulou M, Legido A, Boyd JC, Balin B, Parikh NA, Maraziotis T, de Chadarevian JP, Varakis JN, Matsas R, Spano A, Frankfurter A, Herman MM, Khalili K (2001) Aberrant localization of the neuronal class III beta-tubulin in astrocytomas. Arch Pathol Lab Med 125:613–624

    PubMed  CAS  Google Scholar 

  10. Kay E, O’Grady A, Morgan JM, Wozniak S, Jasani B (2004) Use of tissue microarray for interlaboratory validation of HER2immunocytochemical and FISH testing. J Clin Pathol 57:1140–1144

    Article  PubMed  CAS  Google Scholar 

  11. Kleihues P, Cavenee WK. (2000) World Health Organization classification of tumours, pathology and genetics of tumours of the nervous system. IARC, Lyon

    Google Scholar 

  12. Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallioniemi OP (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4:844–847

    Article  PubMed  CAS  Google Scholar 

  13. Koperek O, Gelpi E, Birner P, Haberler C, Budka H, Hainfellner JA (2004) Value and limits of immunohistochemistry in differential diagnosis of clear cell primary brain tumors. Acta Neuropathol (Berl) 108:24–30

    Article  Google Scholar 

  14. Kylaniemi M, Koskinen M, Karhunen P, Rantala I, Peltola J, Haapasalo H (2004) A novel frozen brain tissue array technique: immunohistochemical detection of neuronal paraneoplastic autoantibodies. Neuropathol Appl Neurobiol 30:39–45

    Article  PubMed  CAS  Google Scholar 

  15. Liu CL, Prapong W, Natkunam Y, Alizadeh A, Montgomery K, Gilks CB, van de Rijn M (2002) Software tools for high-throughput analysis and archiving of immunohistochemistry staining data obtained with tissue microarrays. Am J Pathol 161:1557–1565

    PubMed  CAS  Google Scholar 

  16. Lusis EA, Chicoine MR, Perry A (2005) High throughput screening of meningioma biomarkers using a tissue microarray. J Neurooncol 73:219–223

    Article  PubMed  CAS  Google Scholar 

  17. Nakazato Y, Ishizeki J, Takahashi K, Yamaguchi H, Kamei T, Mori T (1982) Localization of S-100 protein and glial fibrillary acidic protein-related antigen in pleomorphic adenoma of the salivary glands. Lab Invest 46:621–626

    PubMed  CAS  Google Scholar 

  18. Nakazato Y, Sasaki A, Hirato J, Ishida Y (1987) Monoclonal antibodies which recognize phosphorylated and nonphosphorylated epitopes of neurofilament protein. Biomed Res 8:369–376

    CAS  Google Scholar 

  19. Nakazato Y, Hirato J, Sasaki A, Yokoo H, Arai H, Yamane Y, Jyunki S (2002) Differential labeling of the pinealocytes and pineal interstitial cells by a series of monoclonal antibodies to human pineal body. Neuropathology 22:26–33

    Article  PubMed  Google Scholar 

  20. Neben K, Korshunov A, Benner A, Wrobel G, Hahn M, Kokocinski F, Golanov A, Joos S, Lichter P (2004) Microarray-based screening for molecular markers in medulloblastoma revealed STK15 as independent predictor for survival. Cancer Res 64:3103–3111

    Article  PubMed  CAS  Google Scholar 

  21. Riemenschneider MJ, Koy TH, Reifenberger G (2004) Expression of oligodendrocyte lineage genes in oligodendroglial and astrocytic gliomas. Acta Neuropathol (Berl) 107:277–282

    Article  CAS  Google Scholar 

  22. Sallinen SL, Sallinen PK, Haapasalo HK, Helin HJ, Helen PT, Schraml P, Kallioniemi OP, Kononen J (2000) Identification of differentially expressed genes in human gliomas by DNA microarray and tissue chip techniques. Cancer Res 60:6617–6622

    PubMed  CAS  Google Scholar 

  23. Tynninen O, Carpen O, Jaaskelainen J, Paavonen T, Paetau A (2004) Ezrin expression in tissue microarray of primary and recurrent gliomas. Neuropathol Appl Neurobiol 30:472–477

    Article  PubMed  CAS  Google Scholar 

  24. Warth A, Kroger S, Wolburg H (2004) Redistribution of aquaporin-4 in human glioblastoma correlates with loss ofagrin immunoreactivity from brain capillary basal laminae. Acta Neuropathol (Berl) 107:311–318

    Article  CAS  Google Scholar 

  25. Warth A, Mittelbronn M, Wolburg H (2005) Redistribution of the water channel protein aquaporin-4 and the K+ channel protein Kir4.1 differs in low- and high-grade human brain tumors. Acta Neuropathol (Berl) 109:418–426

    Article  CAS  Google Scholar 

  26. Yamaguchi H (1980) Studies on the immunohistochemical localization of S-100 and glial fibrillary acidic proteins in the rat nervous system and in human brain tumors (in Japanese). No To Shinkei 32:1055–1064

    PubMed  CAS  Google Scholar 

  27. Yamane Y, Mena H, Nakazato Y (2002) Immunohistochemical characterization of pineal parenchymal tumors using novel monoclonal antibodies to the pineal body. Neuropathology 22:66–76

    Article  PubMed  Google Scholar 

  28. Yokoo H, Nakazato Y (1996) A monoclonal antibody that recognizes a carbohydrate epitope of human protoplasmic astrocytes. Acta Neuropathol (Berl) 91:23–30

    Article  CAS  Google Scholar 

  29. Yokoo H, Sasaki A, Hirato J, Nakazato Y (1996) A monoclonal antibody that specifically recognizes a novel mitochondrial protein of human astrocytes. J Neuropathol Exp Neurol 55:716–721

    Article  PubMed  CAS  Google Scholar 

  30. Yokoo H, Sasaki A, Hirato J, Nakazato Y (1998) Immunohistochemical characterization of two novel monoclonal antibodies that recognize human perivascular cells of the central nervous system and macrophage subsets. Pathol Int 48:678–688

    Article  PubMed  CAS  Google Scholar 

  31. Yokoo H, Nobusawa S, Takebayashi H, Ikenaka K, Isoda K, Kamiya M, Sasaki A, Hirato J, Nakazato Y (2004) Anti-human Olig2 antibody as a useful immunohistochemical marker of normal oligodendrocytes and gliomas. Am J Pathol 164:1717–1725

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor K. Takata (Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine) for providing antibodies (AQP4M13d and AQP4M13e). We also thank Dr. M. Kamiya for helpful advice. The technical assistance of Ms. A. Kumagai and Ms. A. Kodama is gratefully acknowledged. This work was supported in part by a Grant-in-Aid for Scientific Research (B) (no. 15300113) from the Japanese Ministry of Education, Culture, Sports, Science and Technology (to YN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayato Ikota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikota, H., Kinjo, S., Yokoo, H. et al. Systematic immunohistochemical profiling of 378 brain tumors with 37 antibodies using tissue microarray technology. Acta Neuropathol 111, 475–482 (2006). https://doi.org/10.1007/s00401-006-0060-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-006-0060-1

Keywords

Navigation