Skip to main content
Log in

Determining the true slip of a yield stress material with a sliding plate rheometer

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Within this paper we demonstrate the capability of the sliding plate configuration of the flexure-based microgap rheometer (FMR) to absolutely determine slip velocities of a yield stress fluid. The sensitivity of the compound flexures of the FMR in combination with the possibility to achieve precise gap settings down to 1 μm allows to accurately determining slip velocities down to 1 μm/s. We further show how the obtained non-linear relation of the slip velocity to the constant stresses of the plane Couette flow in the sliding plate configuration of the FMR allows predicting and explaining the inhomogeneous stress distribution and partial yielding behaviour in a rotational cone-and-plate geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ardakani HA, Mitsoulis E, Hatzikiriakos SG (2011) Thixotropic flow of toothpaste through extrusion dies. J Non-Newton Fluid Mech 166(21–22):1262–1271. doi:10.1016/j.jnnfm.2011.08.004

    Article  CAS  Google Scholar 

  • Baik SJ, Moldenaers P, Clasen C (2008) Determination of normal stresses in micrometer thin films. In: Co A, Leal LG, Colby RH, Giacomin AJ (eds) XVth international congress on rheology—the Society of Rheology 80th annual meeting, pts 1 and 2, vol 1027. Aip Conference Proceedings. Amer Inst Physics, Melville, pp 1165–1167

  • Baik SJ, Moldenaers P, Clasen C (2011) A sliding plate microgap rheometer for the simultaneous measurement of shear stress and first normal stress difference. Rev Sci Instrum 82(3):035121. doi:10.1063/1.3571297

    Article  Google Scholar 

  • Barnes HA (1995) A review of the slip (wall depletion) of polymer-solutions, emulsions and particle suspensions in viscometers—its cause, character, and cure. J Non-Newton Fluid Mech 56(3):221–251

    Article  CAS  Google Scholar 

  • Bertola V, Bertrand F, Tabuteau H, Bonn D, Coussot P (2003) Wall slip and yielding in pasty materials. J Rheol 47(5):1211–1226. doi:10.1122/1.1595098

    Article  CAS  Google Scholar 

  • Clasen C (2012) High shear rheometry using hydrodynamic lubrication flows. J Rheol, in press

  • Clasen C, McKinley GH (2004) Microrheometry: gap-dependent rheology and tribology of complex fluids. In: Lee JW, Lee SJ (eds) The XIVth international congress on rheology. The Korean Society of Rheology, Seoul, pp 1–3

  • Clasen C, Gearing BP, McKinley GH (2006) The flexure-based microgap rheometer (FMR). J Rheol 50(6):883–905

    Article  CAS  Google Scholar 

  • Clasen C, Kavehpour HP, McKinley GH (2010) Bridging tribology and microrheology of thin films. Appl Rheol 20(4):196–208. doi:10.3933/ApplRheol-20–45049

    Google Scholar 

  • Cohen Y, Metzner AB (1985) Apparent slip-flow of polymer-solutions. J Rheol 29(1):67–102

    Article  CAS  Google Scholar 

  • Davies GA, Stokes JR (2008) Thin film and high shear rheology of multiphase complex fluids. J Non-Newton Fluid Mech 148(1–3):73–87

    Article  CAS  Google Scholar 

  • Derakhshandeh B, Hatzikiriakos SG, Bennington CPJ (2010) Rheology of pulp suspensions using ultrasonic Doppler velocimetry. Rheol Acta 49(11–12):1127–1140. doi:10.1007/s00397-010-0485-2

    Article  CAS  Google Scholar 

  • Dimitriou CJ, McKinley GH, Venkatesan R (2011) Rheo-PIV Analysis of the yielding and flow of model waxy crude oils. Energy Fuels 25(7):3040–3052. doi:10.1021/ef2002348

    Article  CAS  Google Scholar 

  • Erni P, Varagnat M, Clasen C, Crest J, McKinley GH (2011) Microrheometry of sub-nanolitre biopolymer samples: non-Newtonian flow phenomena of carnivorous plant mucilage. Soft Matter 7(22):10889–10898. doi:10.1039/c1sm05815k

    Article  CAS  Google Scholar 

  • Giacomin AJ, Samurkas T, Dealy JM (1989) A novel sliding plate rheometer for molten plastics. Polym Eng Sci 29(8):499–504

    Article  CAS  Google Scholar 

  • Hatzikiriakos SG (1993) A slip model for linear-polymers based on adhesive failure. Int Polym Process 8(2):135–142

    CAS  Google Scholar 

  • Hatzikiriakos SG, Dealy JM (1991) Wall slip of molten high-density polyethylene.1. Sliding plate rheometer studies. J Rheol 35(4):497–523

    Article  CAS  Google Scholar 

  • Kalika DS, Denn MM (1987) Wall slip and extrudate distortion in linear low-density polyethylene. J Rheol 31(8):815–834. doi:10.1122/1.549942

    Article  CAS  Google Scholar 

  • Kalyon DM, Yaras P, Aral B, Yilmazer U (1993) Rheological behaviour of a concentrated suspension—a solid rocket fuel simulant. J Rheol 37(1):35–53. doi:10.1122/1.550435

    Article  CAS  Google Scholar 

  • Kojic N, Bico J, Clasen C, McKinley GH (2006) Ex vivo rheology of spider silk. J Exp Biol 209(21):4355–4362

    Article  CAS  Google Scholar 

  • Kramer J, Uhl JT, Prudhomme RK (1987) Measurement of the viscosity of guar gum solutions to 50,000 1/s using a parallel plate rheometer. Polym Eng Sci 27(8):598–602

    Article  CAS  Google Scholar 

  • Laun HM (2004) Capillary rheometry for polymer melts revisited. Rheol Acta 43(5):509–528. doi:10.1007/s00397-004-0387-2

    Article  CAS  Google Scholar 

  • Lumma D, Best A, Gansen A, Feuillebois F, Radler JO, Vinogradova OI (2003) Flow profile near a wall measured by double-focus fluorescence cross-correlation. Phys Rev E 67(5):10. doi:10.1103/PhysRevE.67.056313

    Article  Google Scholar 

  • Macosko C (1994) Rheology: principles, measurements, and applications. VCH, New York

    Google Scholar 

  • Mair RW, Callaghan PT (1996) Observation of shear banding in worm-like micelles by NMR velocity imaging. Europhys Lett 36(9):719–724. doi:10.1209/epl/i1996–00293–9

    Article  CAS  Google Scholar 

  • Manneville S, Becu L, Colin A (2004) High-frequency ultrasonic speckle velocimetry in sheared complex fluids. Eur Phys J-Appl Phys 28(3):361–373. doi:10.1051/epjap:2004165

    Article  Google Scholar 

  • Meeker SP, Bonnecaze RT, Cloitre M (2004a) Slip and flow in pastes of soft particles: direct observation and rheology. J Rheol 48(6):1295–1320. doi:10.1122/1.1795171

    Article  CAS  Google Scholar 

  • Meeker SP, Bonnecaze RT, Cloitre M (2004b) Slip and flow in soft particle pastes. Phys Rev Lett 92(19):4. doi:10.1103/PhysRevLett.92.198302

    Article  Google Scholar 

  • Migler KB, Hervet H, Leger L (1993) Slip transition of a polymer melt under shear-stress. Phys Rev Lett 70(3):287–290

    Article  CAS  Google Scholar 

  • Mooney M (1931) Explicit formulas for slip and fluidity. J Rheol 2:210–222

    Article  CAS  Google Scholar 

  • Navier CLMH (1823) On the laws of movement of fluids. Mém de l’Acad Roy des Sciences de l’Inst de France 6:389–440

  • Neto C, Evans DR, Bonaccurso E, Butt HJ, Craig VSJ (2005) Boundary slip in Newtonian liquids: a review of experimental studies. Rep Prog Phys 68(12):2859–2897. doi:10.1088/0034-4885/68/12/r05

    Article  CAS  Google Scholar 

  • Piau JM, Piau A (2005) Letter to the editor: comment on “origin of concentric cylinder viscometry” [J Rheol 49:807–818 (2005)]. The relevance of the early days of viscosity, slip at the wall, and stability in concentric cylinder viscometry. J Rheol 49(6):1539–1550. doi:10.1122/1.2072087

    Google Scholar 

  • Picard G, Ajdari A, Bocquet L, Lequeux F (2002) Simple model for heterogeneous flows of yield stress fluids. Phys Rev E 66(5):12. doi:10.1103/PhysRevE.66.051501

    Article  Google Scholar 

  • Princen HM, Kiss AD (1986) Rheology of foams and highly concentrated emulsions. III: Static shear modulus. J Colloid Interface Sci 112(2):427–437. doi:10.1016/0021-9797(86)90111-6

    Article  CAS  Google Scholar 

  • Reimers MJ, Dealy JM (1998) Sliding plate rheometer studies of concentrated polystyrene solutions: nonlinear viscoelasticity and wall slip of two high molecular weight polymers in tricresyl phosphate. J Rheol 42(3):527–548

    Article  CAS  Google Scholar 

  • Rofe CJ, deVargas L, PerezGonzalez J, Lambert RK, Callaghan PT (1996) Nuclear magnetic resonance imaging of apparent slip effects in xanthan solutions. J Rheol 40(6):1115–1128. doi:10.1122/1.550775

    Article  CAS  Google Scholar 

  • Russel WB, Grant MC (2000) Distinguishing between dynamic yielding and wall slip in a weakly flocculated colloidal dispersion. Colloids Surf A Physicochem Eng Asp 161(2):271–282. doi:10.1016/s0927-7757(99)00376-3

    Article  CAS  Google Scholar 

  • Salmon JB, Becu L, Manneville S, Colin A (2003) Towards local rheology of emulsions under Couette flow using dynamic light scattering. Eur Phys J E 10(3):209–221. doi:10.1140/epje/i2002-10110-5

    Article  CAS  Google Scholar 

  • Seth JR, Cloitre M, Bonnecaze RT (2008) Influence of short-range forces on wall-slip in microgel pastes. J Rheol 52(5):1241–1268. doi:10.1122/1.2963135

    Article  CAS  Google Scholar 

  • Yeow YL, Leong YK, Khan A (2006) Non-Newtonian flow in parallel-disk viscometers in the presence of wall slip. J Non-Newton Fluid Mech 139(1–2):85–92. doi:10.1016/j.jnnfm.2006.07.005

    Article  CAS  Google Scholar 

  • Yeow YL, Leong YK, Khan A (2008) Slow steady viscous flow of newtonian fluids in parallel-disk viscometer with wall slip. J Appl Mech-Trans ASME 75(4):7. doi:10.1115/1.2910901

    Article  Google Scholar 

  • Yoshimura A, Prudhomme RK (1988) Wall slip corrections for Couette and parallel disk viscometers. J Rheol 32(1):53–67

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the research foundation Flanders (FWO) (project G.0543.10) and the Bijzonder Onderzoeksfonds K.U. Leuven (GOA 09/002). Furthermore. they would like to thank G.H. McKinley and P. Erni for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Clasen.

Appendix

Appendix

The slip velocity and bulk shear rate are determined following the Mooney analysis by plotting for a constant stress the different shear rates that were observed in Fig. 2 at different gaps as function of the inverse gap. Following Eq. 1, the linear extrapolation of such a series of constant stress gives the bulk shear rate as the y-axis intersect and the slip velocity as the slope of the interpolated curve.

Fig. 5
figure 5

Slip analysis of the flow curve data of Fig. 2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clasen, C. Determining the true slip of a yield stress material with a sliding plate rheometer. Rheol Acta 51, 883–890 (2012). https://doi.org/10.1007/s00397-012-0647-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-012-0647-5

Keywords

Navigation