Skip to main content
Log in

Viscous dissipation and completely monotonic relaxation moduli

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The connection between weak dissipativity and positive definiteness of the relaxation function as well as between monotone energy decay and complete monotonicity of the relaxation function of a linear viscoelastic system is discussed. Some theorems about the composition of completely monotonic functions relevant for polymer rheology are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

R :

the set of all real numbers

C :

the set of complex numbers

R +:=:

\({\left\{{ x \in R \left| {x \geq 0 }\right. }\right\}}\)

C +:=:

\(\left\{p\left|{{\text{Re}}} \right. p > 0\right\}\)

R ++:=:

\({\left\{{x \in R \left| {x > 0 }\right. }\right\}}\)

Z +=:

set of non-negative integers

R d :

the space of d-dimensional real vectors \( {\mathbf{v}} = {\left( {v_{1} \ldots ,v_{d} } \right)} \)

C d :

the space of d-dimensional complex vectors \( {\left( {v_{1} \ldots ,v_{d} } \right)} \)(v 1..., v d )

z* :

complex conjugate

\(v^{\dag} \) :

Hermitean conjugate

S :

the space of symmetric d× d tensors

Z :

either R d or S, considered as a linear space

W :

the linear space of linear mappings L: ZZ

\( f * g(t): = \) :

\(\int\limits_{- \infty}^t {f(t - s)\,g(s)\;} \text{d}s \equiv \int\limits_0^\infty {f(s)\;g(t - s)\;\text{d}s}\)

\(\dot e =\) :

de/dt

e t (s) :=:

e(ts), \(\dot e^t (s): = \dot e(t - s),s \geq 0;\)

θ(t):

the Heaviside unit step function.

Dn : =:

n /∂t n

References

  • Beris AN, Edwards BJ (1993) On the admissibility criteria for linear viscoelasticity kernels. Rheologica Acta 32:505–510

    Article  Google Scholar 

  • Bland DR (1960) The Theory of Linear Viscoelasticity. Pergamon Press, Oxford.

    Google Scholar 

  • Breuer S, Onat ET (1964) On recoverable work in linear viscoelasticity. ZAMP 15:13–21

    Article  Google Scholar 

  • Coleman BD (1964) Thermodynamics of materials with memory. Arch Rat Mech Anal 17:1–46

    Google Scholar 

  • Day WA (1968) Thermodynamics based on a work axiom, Arch Rat Mech Anal 31:1–34

    Article  Google Scholar 

  • Day WA (1970) On monotonicity of the relaxation functions of viscoelastic materials. Proc Cambr Phil Soc 67:503–508

    Article  Google Scholar 

  • Day WA (1970a), Restrictions on the relaxation functions in linear viscoelasticity. Quart Jl Mech appl Math 24:487–497

    Article  Google Scholar 

  • Del Piero G, Deseri L (1996) On the analytic expression of the free energy in linear viscoelasticity. J Elasticity 47:247–278

    Google Scholar 

  • Fabrizio M, Morro A (1992) Mathematical Problems in Linear Viscoelasticity. SIAM, Philadelphia

    Book  Google Scholar 

  • Gelfand IM, Shilov GE (1964) Generalized Functions vol I. Academic Press, New York

    Google Scholar 

  • Gripenberg G, Londen S-O, Staffans OJ (1990) Volterra Integral and Functional Equations. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gromov VG (1971) Representation of the resolvents of viscoelastic operators by relaxation distribution functions. Prikl Mat Mekh 4:750–759 (in Russian)

    Google Scholar 

  • Gurtin ME, Herrera I (1965) On dissipation inequalities and linear viscoelasticity. Quart appl Math XXII:235–245

    Google Scholar 

  • Hanyga A (2003) Well-posedness and regularity for a class of linear thermo-viscoelastic materials. Proc Roy Soc London A 459:2281–2296

    Article  Google Scholar 

  • Hanyga A (2005) Physically acceptable viscoelastic models, In: K Hutter, Y. Wang (eds) Trends in Applications of Mathematics to Mechanics. Shaker Verlag GmbH, Aachen

    Google Scholar 

  • Hanyga A, Seredyńska M (1999), Thermodynamics and asymptotic theory of wave propagation in viscoporous media, In: Y.-C. Teng, E.-C. Shang, Y.-H. Pao, M. H. Schultz, A.D. Pierce, (eds) Theoretical and Computational Acoustics 97. World-Scientific, Singapore.

    Google Scholar 

  • Hanyga A, Seredyńska M (2003) Power law attenuation in acoustic and isotropic anelastic media. Geophys J Int 155:830–838

    Article  Google Scholar 

  • König H, Meixner J (1958) Lineare Systeme und lineare Transformationen. Math Nachr 19:256–322

    Article  Google Scholar 

  • Lion A (1997) On the thermodynamics of fractional damping elements. Continuum Mech Thermodyn 9:83–96

    Article  Google Scholar 

  • Molinari A (1975) Viscoélasticité linéaire et fonctions complètement monotones. J de mécanique 12:541–553

    Google Scholar 

  • Ochman M, Makarov S (1993), Representation of absorption of non-linear waves by fractional derivatives. J Acoust Soc Am 94:3392–3399

    Article  Google Scholar 

  • Schwartz L (1957) Théorie des distributions, 2nd ed. Hermann, Paris

    Google Scholar 

  • Staverman AJ, Schwarzl F (1952) Thermodynamics of viscoelastic behavior. Proc Konink Nederlands Akad van Wetenskapen B55:474–485

    Google Scholar 

  • Szabo TL (1994) Time domain wave equations for lossy media obeying a frequency power law. J Acoust Soc Am 96:491–500

    Article  Google Scholar 

  • Szabo TL (1995) Causal theories and data for acoustic attenuation obeying a frequency power law, J Acoust Soc Am 97:14–24

    Article  Google Scholar 

  • Widder DV (1946) The Laplace Transform. Princeton University Press, Princeton

    Google Scholar 

  • Widder DV (1971) An Introduction to Transformation Theory. Academic Press, New York.

    Google Scholar 

  • Youla DC, Castriota LJ, Carlin HJ, (1959) Bounded real scattering matrices and the foundations of linear passive network theory. IEEE Trans Circuit Theory CT-6:102–124

    Article  Google Scholar 

  • Zemanian AH (1972) Realizability Theory For Continuous Linear Systems. Academic Press, New York

    Google Scholar 

Download references

Acknowledgements

The research was carried out in the framework of the project “Mathematical Modeling of Seismic Attenuation”, sponsored by the Norwegian Scientific Council in the framework of the Petroforsk program in 2002–2004. Critical remarks of Dr M. Seredyńska as well as an anonymous reviewer are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Hanyga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanyga, A. Viscous dissipation and completely monotonic relaxation moduli. Rheol Acta 44, 614–621 (2005). https://doi.org/10.1007/s00397-005-0443-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-005-0443-6

Keywords

Navigation