Skip to main content
Log in

Adsorption and desorption of curcumin by poly(vinyl) alcohol-multiwalled carbon nanotubes (PVA-MWCNT)

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNT) are among the most striking discoveries in the search for new materials as drug delivery carrier. In the present work, multiwalled CNT (MWCNT) functionalized with polyvinyl alcohol (PVA) was developed as a potential carrier for Curcumin (Cur). The aim was to investigate its loading and release efficiency in vitro. To achieve this goal, pristine MWCNT (p-MWCNT) was firstly oxidized by acids and functionalized with PVA. Next, systematic evaluation of Cur loading efficiency on PVA-MWCNT was determined using adsorption kinetics and isotherm studies and was compared to p-MWCNT and oxidized-MWCNT (ox-MWCNT). The release of Cur was analyzed in physiological buffer pH 7.4 and 5.5. From the results, all MWCNT adsorbed Cur rapidly and well described by the pseudo-second order model. The isotherm results suggest that the PVA-MWCNT and p-MWCNT obey Freundlich isotherm model with maximum Cur adsorption (kf) of 5.1 and 69.0 mg/g, respectively, while Cur adsorption on ox-MWCNT followed Langmuir isotherm model with maximum adsorption (qm) of 714.3 mg/g. Cur desorbed significantly (25–30%) from PVA-MWCNT at pH 5.5 than that of pH 7.4, with a sustained release over 3 days of incubation. The results suggest its weak binding interaction to the PVA-MWCNT has facilitated its release at lower pH, compared to ox-MWCNT that occurred via chemisorption. The p-MWCNT ranked the lowest with 4–6% Cur released at both pHs. Overall, the initially developed drug delivery system was considered successful for loading and the release of Cur, which potentially benefit disorders related to cancer or oxidative-related injuries in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Firme III CP, Bandaru PR (2010) Toxicity issues in the application of carbon nanotubes to biological systems Nanomedicine 62(3):362–374

    Google Scholar 

  2. Dumortier H, Lacotte S, Pastorin G, Marega R, Wu W, Bonifazi D, Briand JP, Prato M, Muller S, Bianco A (2006) Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells Nano Lett 6:1522

    Article  CAS  Google Scholar 

  3. Nimmagadda A, Thurston K, Nollert MU, McFetridge PS (2006) Chemical modification of SWNT alters in vitro cell-SWNT interactions J. Biomed Mater Res A 76A:614

    Article  CAS  Google Scholar 

  4. Murugesan S, Park TJ, Yang H, Mousa S, Linhardt RJ (2006) Blood compatible carbon nanotubes—nano-based neoproteoglycans Langmuir 22:3461

    Article  CAS  Google Scholar 

  5. Wang S, Gao Q, Luo WJ, Xu C, Zhou G, Xia H (2013) Removal of methylene blue from aqueous solution by magnetic carbon nanotube Water Sci Technol 68(3):153–161

    Google Scholar 

  6. Yao Y, Xu F, Chen M, Xu Z, Zhu Z (2010) Adsorption behavior of methylene blue on carbon nanotubes Bioresour Technol 101:3040

    Article  CAS  Google Scholar 

  7. Yang K, Xing B (2009) Adsorption of fulvic acid by carbon nanotubes from water Environ Pollut 157:1095

    Article  CAS  Google Scholar 

  8. Liu Y, Liy Y, Zhang J, Wu X, Wei J, Pei D, Di D (2015) Adsorption behaviors for oleuropein from olive oil leaves extracts by porous materials with carbon nanotubes Colloid Polym Sci 293:2395–2404

    Article  CAS  Google Scholar 

  9. Mphahlele K, Onyango MS, Mhlanga SD (2015) Adsorption of aspirin and paracetamol from aqueous solution using Fe/N-CNT/B-cyclodextrin nanocomposites synthesized via a benign microwave assisted method J Environ Chem Eng 3(4):2619–2630

    Article  CAS  Google Scholar 

  10. Wang WL, Wu QY, Wang ZM, Niu LX, Wang C, Sun MC, Hu HY (2015) Adsorption removal of antiviral drug oseltamivir and its metabolite oseltamivir carboxylate by carbon nanotubes: effects of carbon nanotubes properties and media J Environ Manag 162:326–333

    Article  CAS  Google Scholar 

  11. Liu Z, Sun X, Nakayama-Ratchford N, Dai H (2007) Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery ACS Nano 1(1):50–56

  12. Zhang X, Meng L, Lu Q, Fei Z, Dyson PJ (2009) Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes Biomaterials 30:6041

    Article  CAS  Google Scholar 

  13. Heister E, Neves V, Lamprecht C, Silva SRP, Coley HM, MacFadden J (2012) Drug loading, dispersion stability, and therapeutic efficacy in targeted drug delivery with carbon nanotubes Carbon 50:622–632

    Article  CAS  Google Scholar 

  14. Skwarczynski M, Hayashi Y, Kiso Y (2006) Paclitaxel prodrugs: toward smarter delivery of anticancer agents J Med Chem 49:7253–7269

    Article  CAS  Google Scholar 

  15. Ren YP, Pastorin G (2008) Incorporation of hexamethylmelamine inside capped carbon nanotubes Adv Mater 20:2031–2036

    Article  CAS  Google Scholar 

  16. Thakur VK, Thakur MK (2015) Chemical functionalization of carbon nanomaterials: chemistry and applications, vol 36. CRC Press, Boca Raton,

    Book  Google Scholar 

  17. Lay CL, Liu HQ, Tan HR, Liu Y (2010) Delivery of paclitaxel by physically loading onto poly(ethylene glycol) (PEG)-graft-carbon nanotubes for potent cancer therapeutics Nanotechnology 21:065101

    Article  Google Scholar 

  18. Dhillon N, Wolff RA, Abbruzzese JL, Hong DS, Camacho LH, Li L, Braiteh FS, Kurzrock R (2006) Phase II clinical trial of curcumin in patients with advanced pancreatic cancer J Clin Oncol Abstract 24(18S):14151

    Google Scholar 

  19. Mishra S, Palanivelu K (2008) The effect of curcumin (turmeric) on Alzheimer’s disease: an overview Ann Indian Acad Neurol 11(1):13–19

    Article  Google Scholar 

  20. Kinnear C, Burnand D, Clift MJD, Kilbinger AFM, Rothen-Rutihauser B, Petri-Fink A (2014) Polyvinyl alcohol as a biocompatible alternative for the passivation of gold nanorods Angew Chem Int Ed 53(46):12613–12617

    CAS  Google Scholar 

  21. Stubbs M, Mcsheehy PMJ, Griffifths JR, Bashford CL (2000) Causes and consequences of tumor acidity and implications for treatment Mol Med Today 6:15–19

    Article  CAS  Google Scholar 

  22. Ahmad Zawawi N, Abdul Majid Z, Abdul Rashid NA (2016) Effect of acid oxidation methods on multi-walled carbon nanotubes (MWCNT) for drug delivery application IJASRM 1(11):14–22

    Google Scholar 

  23. Sahoo NG, Bao H, Pan Y, Pal M, Kakran M, Cheng HKF, Li L, Tan LP (2011) Functionalization carbon nanomaterials as nanocarriers for loading and delivery of poorly water soluble anticancer drug: a comparative study Chem Comm 47(18):5235–5237

    Article  CAS  Google Scholar 

  24. Li H, Zhang N, Wang Y, Jia S, Zhang H, Zhang Y, Zhang Z (2014) Formulation of curcumin delivery with functionalized single-walled carbon-nanotubes: characteristics and anticancer effects in vitro Drug Deliv 21(5):379–387

    Article  CAS  Google Scholar 

  25. Malikov EY, Muradov MB, Akperov OH, Eyvazova GM, Puskás R, Madaráz D, Nagy L, Kukovecz Á, Kónya Z (2014) Synthesis and characterization of polyvinyl alcohol based multiwalled carbon nanotube nanocomposites Phys E 61:129–134

    Article  CAS  Google Scholar 

  26. Dresselhaus MS (1998) Carbon nanotubes—introduction J Mater Res 13:2355–2356

    Google Scholar 

  27. Osorio AG, Silveria ICL, Bueno VL, Bergmann CP (2008) H2SO4/HNO3/HCl—functionalization and its effect on dispersion of carbon nanotubes in aqueous media Appl Surf Sci 255:2485–2489

    Article  CAS  Google Scholar 

  28. Agnihotri S, Mota JPB, Rostam-Abadi M, Rood MJ (2006) Adsorption site analysis of impuritu embedded single-walled carbon nanotube bundles Carbon 44:23762383

    Article  Google Scholar 

  29. Shaffer MSP, Fan X, Windle AH (1998) Dispersion and packing of carbon nanotubes Carbon 36(11):1603–1612

    Article  CAS  Google Scholar 

  30. Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C (2008) Chemical oxidation of multiwalled carbon nanotubes Carbon 46:833–840

    Article  CAS  Google Scholar 

  31. Gimenez V, Mantecom A, Cadiz V (1996) Modification of poly(vinyl alcohol) with acid chlorides and crosslinking with difunctional hardeners J Polym Sci Part A: Polym Chem 34:92534

    Article  Google Scholar 

  32. Xue YJ, Hou HB, Zhu SJ (2009) Adsorption removal of reactive dyes from aqueous solution by modified basic oxygen furnace slag: isotherm and kinetic study Chem Eng J 147:272–279

    Article  CAS  Google Scholar 

  33. Lagergren S (1898) About the theory of so-called adsorption of soluble substance Kungl Sven Vetenskapsakademiens Handl 24:1–39

    Google Scholar 

  34. Uzun I (2006) Kinetics of the adsorption of reactive dyes by chitosan Dyes Pigments 70:76

    Article  CAS  Google Scholar 

  35. Chen Z, Pierre D, He H, Tan S, Pham-Huy C, Hong H, Huang J (2011) Adsorption behavior of epirubicin hydrochloride on carboxylated carbon nanotubes Int J Pharm 405(1–2):153–161. doi:10.1016/j.ijpharm.2010.11.034

    Article  CAS  Google Scholar 

  36. Wang Y, Yang ST, Wang Y, Liu Y, Wang H (2012) Adsorption and desorption of doxorubicin on oxidized carbon nanotubes Colloids Surf B Biointerfaces 97:62–69

    Article  CAS  Google Scholar 

  37. Iscen CF, Kiran I, Ilhan S (2007) Biosorption of reactive black 5 dye by Penicillium restrictum: the kinetic study J Hazard Mater 143:335–338

    Article  CAS  Google Scholar 

  38. Gotovac S, Song L, Kanoh H, Kaneko K (2007) Assembly structure control of single wall carbon nanotubes with liquid phase naphthalene adsorption Colloids Surf A Physicochem Eng Asp 300:117–121

    Article  CAS  Google Scholar 

  39. Ng C, Losso JN, Marshall WE, Rao RM (2002) Freundlich adsorption isotherms of agricultural by-product-based powdered activated carbon s in geosmin water system Bioresour Technol 85:131–133

    Article  CAS  Google Scholar 

  40. Lugo-Lugo V, Henandez-Lopez S, Barrear-Diaz C, Urena-Nunez F, Bilyeu B (2009) A comparative study of natural, formaldehyreated and co-polymer-grafted orange peel for Pb(II) adsorption under batch and continuous mode J Hazard Mater 161:1255–1264

    Article  CAS  Google Scholar 

  41. Lim CK, Neoh CH, Aris A, Abdul Majid ZA, Ibrahim Z (2013) Application of zeolite-activated carbon macrocomposite for the adsorption of Acid Orange 7: isotherm, kinetic and thermodynamic studies Environ Sci Pollut Res 20(10):7243–7255

    Article  CAS  Google Scholar 

  42. Wang JH, Han XJ, Ma HR, Ji YF, Bi LJ (2011) Adsorption removal of humic acid from aqueous solution on polyaniline/attapulgite composite Chem Eng J 173:171–177

    Article  CAS  Google Scholar 

  43. Ajmal M, Rao RAK, Ahmad R, Ahmad J (2000) Adsorption studies on Citrus recticulate (fruit peel of orange):removal and recovery of Ni (II) from electroplating wastewater J Hazard Mater 79:117–131

    Article  CAS  Google Scholar 

  44. Pan K, Xing B (2008) Adsorption mechanism of organic chemicals on carbon nanotubes Environ Pollut 157:1095

    Google Scholar 

  45. Tian Y, Gao B, Chen H, Wang Y, Li H (2013) Interactions between carbon nanotubes and sulfonamide antibiotics in aqueous solutions under various physicochemical conditions J Environ Sci Heal A 48:1136–1144

    Article  CAS  Google Scholar 

  46. Förch R (2009) Tutorial review: surface modification and adhesion. In: Förch R, Schönlerr H, Tobias A, Jenkins ATA (eds) Surface design and applications in bioscience and nanotechnology. Wiley, Chichester, pp. 55–80

    Chapter  Google Scholar 

  47. Lu YJ, Wei KC, Ma CCM, Yang SY, Chen JP (2012) Dual targeted delivery of doxorubicin to cancer cells using folate-conjugated magnetic multi-walled carbon nanotubes Colloids Surf B Biointerfaces 89:1–9

    Article  CAS  Google Scholar 

  48. Sun-Wada GH, Wada Y, Futai M (2003) Lysosome and lysosome-related organelles responsible for specialized functions in higher organisms, with special emphasis on vacuolar-type proton Atpase Cell Struct Funct 28:455–463

    Article  CAS  Google Scholar 

  49. Tannock IF, Rotin D (1989) Acid pH in tumors and its potential for therapeutic exploitation Cancer Res 49:4373–4384

    CAS  Google Scholar 

  50. Liu Y, Wang W, Yang J, Zhou C, Sun J (2013) pH-sensitive polymeric micelles triggered drug release for extracellular and intracellular drug targeting delivery Asian J Pharm Sci 8:159–167

    Article  Google Scholar 

  51. David J, Cheek N (2012) Acoustic sensors.Fundamentals and applications of ultrasonic waves, 2nd edn. CRC Press, USA,

    Google Scholar 

  52. Pirchi M, Marksteiner J, Humpel C (2006) Effects of acidosis on brain capillary endothelial cells and cholinergic neurons: relevance to vascular dementia and Alzheimer’s disease Neurol Res 28(6):657–664. doi:10.1179/016164106 X130371

    Article  Google Scholar 

Download references

Acknowledgements

This research project was financially supported by the Ministry of Higher Education Malaysia (MOHE) and Universiti Teknologi Malaysia (Encouragement Grant, Tier-2 No. Q.J130000.2645.11 J32).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurliyana Ahmad Zawawi.

Ethics declarations

Disclosure

The authors report no conflict of interest in this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zawawi, N.A., Majid, Z.A. & Rashid, N.A.A. Adsorption and desorption of curcumin by poly(vinyl) alcohol-multiwalled carbon nanotubes (PVA-MWCNT). Colloid Polym Sci 295, 1925–1936 (2017). https://doi.org/10.1007/s00396-017-4163-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4163-0

Keywords

Navigation