Skip to main content
Log in

Sorbent effect on the sorption of Cr(VI) on a Mg6AlFe-layered double hydroxide and its calcined product in aqueous solutions

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this study, the sorption of hexavalent chromium, Cr(VI), on a Mg6AlFe-layered double hydroxide (LDH) and its calcined product (layered double oxide, LDO) in aqueous solutions was investigated using a batch technique at various sorbent dosages (C s). A significant sorbent effect (C s-effect) was observed in the sorption systems; the sorption isotherms declined as C s increased. The Langmuir and Freundlich isotherms can describe the sorption equilibriums at each given C s well but cannot describe the C s-effect observed. These C s-effect data can be described by the surface component activity (SCA) model, namely, the Langmuir-SCA and Freundlich-SCA isotherms. The C s-effect in the LDO system is stronger than that in the LDH system, which can be attributed to the higher specific surface area of the LDO than that of the LDH. Furthermore, the characteristic saturation sorption capacity of the LDO for Cr(VI), which was obtained from the SCA model, is higher than that of the LDH, indicating that LDOs are more effective sorbents than LDHs are for heavy metal removal. In addition, the influences of pH and electrolyte (NaNO3) concentration (C NaNO3) on the C s-effect were examined; no significant effects were observed upon changing either the solution pH (5–9) or C NaNO3 (0.001–0.100 mol/L). This work improves our understanding of the C s-effect phenomenon and confirms the applicability of the SCA model in describing sorption equilibriums with the C s-effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, Von Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science 313:1072–1077

    Article  CAS  Google Scholar 

  2. Miretzky P, Cirelli AF (2010) Cr (VI) and Cr (III) removal from aqueous solution by raw and modified lignocellulosic materials: a review. J Hazard Mater 180:1–19

    Article  CAS  Google Scholar 

  3. Owlad M, Aroua MK, Daud WAW, Baroutian S (2009) Removal of hexavalent chromium-contaminated water and wastewater: a review. Water Air Soil Pollut 200:59–77

    Article  CAS  Google Scholar 

  4. Liu M, Chen C, Hu J, Wu X, Wang X (2011) Synthesis of magnetite/graphene oxide composite and application for cobalt (II) removal. J Phys Chem C 115:25234–25240

    Article  CAS  Google Scholar 

  5. Das NN, Konar J, Mohanta MK, Srivastava SC (2004) Adsorption of Cr(VI) and Se(IV) from their aqueous solutions onto Zr4+-substituted ZnAl/MgAl-layered double hydroxides: effect of Zr4+ substitution in the layer. J Colloid Interface Sci 270:1–8

    Article  CAS  Google Scholar 

  6. Crini G, Badot PM (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Prog Polym Sci 33:399–447

    Article  CAS  Google Scholar 

  7. Lv L, Sun P, Gu Z, Du H, Pang X, Tao X, Xu R, Xu L (2009) Removal of chloride ion from aqueous solution by ZnAl-NO3 layered double hydroxides as anion-exchanger. J. Hazard Mater 161:1444–1449

    Article  CAS  Google Scholar 

  8. Ma W, Zhao N, Yang G, Tian L, Wang R (2011) Removal of fluoride ions from aqueous solution by the calcination product of Mg–Al–Fe hydrotalcite-like compound. Desalination 268:20–26

    Article  CAS  Google Scholar 

  9. Yang Y, Gao N, Chu W, Zhang Y, Ma Y (2012) Adsorption of perchlorate from aqueous solution by the calcination product of Mg/(Al–Fe) hydrotalcite-like compounds. J Hazard Mater 209–210:318–325

    Article  Google Scholar 

  10. O’Connor DJ, Connolly JP (1980) The effect of concentration of adsorbing solids on the partition coefficient. Water Res 14:1517–1523

    Article  Google Scholar 

  11. Voice TC, Rice CP, Weber WJ (1983) Effect of solids concentration on the sorptive partitioning of hydrophobic pollutants in aquatic systems. Environ Sci Technol 17:513–518

    Article  CAS  Google Scholar 

  12. Voice TC, Weber WJ (1985) Sorbent concentration effects in liquid/solid partitioning. Environ Sci Technol 19:789–796

    Article  CAS  Google Scholar 

  13. Di Toro DM, Mahony JD, Kirchgraber PR, O’Byrne AL, Pasquale LR, Piccirilli DC (1986) Effects of nonreversibility, particle concentration, and ionic strength on heavy-metal sorption. Environ Sci Technol 20:55–61

    Article  Google Scholar 

  14. Pan G, Liss PS (1998) Metastable-equilibrium adsorption theory: I. Theoretical. J Colloid Interface Sci 201:71–76

    Article  CAS  Google Scholar 

  15. Helmy A, Ferreiro E, De Bussetti S (2000) Effect of particle association on 2, 2′-bipyridyl adsorption onto kaolinite. J Colloid Interface Sci 225:398–402

    Article  CAS  Google Scholar 

  16. Chang T, Wang M (2002) Assessment of sorbent/water ratio effect on adsorption using dimensional analysis and batch experiments. Chemosphere 48:419–426

    Article  CAS  Google Scholar 

  17. Wu X, Hu Y, Zhao F, Huang Z, Lei D (2006) Ion adsorption components in liquid/solid systems. J Environ Sci 18:1167–1175

    Article  CAS  Google Scholar 

  18. Sheindorf C, Rebhun M, Sheintuch M (1981) A Freundlich-type multicomponent isotherm. J Colloid Interface Sci 79:136–142

    Article  CAS  Google Scholar 

  19. Gschwend PM, Wu S (1985) On the constancy of sediment-water partition coefficients of hydrophobic organic pollutants. Environ Sci Technol 19:90–96

    Article  CAS  Google Scholar 

  20. McKinley JP, Jenne EA (1991) Experimental investigation and review of the "solids concentration" effect in adsorption studies. Environ Sci Technol 25:2082–2087

    Article  CAS  Google Scholar 

  21. Grolimund D, Borkovec M, Federer P, Sticher H (1995) Measurement of sorption isotherms with flow-through reactors. Environ Sci Technol 29:2317–2321

    Article  CAS  Google Scholar 

  22. Pan G, Liss PS, Krom MD (1999) Particle concentration effect and adsorption reversibility. Colloids Surf A 151:127–133

    Article  CAS  Google Scholar 

  23. Zhao L, Hou W (2012) The effect of sorbent concentration on the partition coefficient of pollutants between aqueous and particulate phases. Colloids Surf A 396:29–34

    Article  CAS  Google Scholar 

  24. Zhao L, Song S, Du N, Hou W (2012) A sorbent concentration-dependent Langmuir isotherm. Acta Phys-Chim Sin 28:2905–2910

    CAS  Google Scholar 

  25. Zhao L, Song S, Du N, Hou W (2013) A sorbent concentration-dependent Freundlich isotherm. Colloid Polym Sci 291:541–550

    Article  CAS  Google Scholar 

  26. Li F, Duan X (2006) Applications of layered double hydroxides, in: Layered double hydroxides. Struct Bond 119:193–223

    Article  CAS  Google Scholar 

  27. Goh KH, Lim TT, Dong Z (2008) Application of layered double hydroxides for removal of oxyanions: A review. Water Res 42:1343–1368

    Article  CAS  Google Scholar 

  28. Liang X, Zang Y, Xu Y, Tan X, Hou W, Wang L, Sun Y (2013) Sorption of metal cations on layered double hydroxides. Colloids Surf A 433:122–131

    Article  CAS  Google Scholar 

  29. Ai Z, Cheng Y, Zhang L, Qiu J (2008) Efficient removal of Cr (VI) from aqueous solution with Fe@ Fe2O3 core − shell nanowires. Environ Sci Technol 42:6955–6960

    Article  CAS  Google Scholar 

  30. Zhang F, Du N, Li H, Liang X, Hou W (2014) Sorption of Cr(VI) on Mg-Al-Fe layered double hydroxides synthesized by a mechanochemical method. RSC Adv 4:46823–46830

    Article  CAS  Google Scholar 

  31. Xiao L, Ma W, Han M, Cheng Z (2011) The influence of ferric iron in calcined nano-Mg/Al hydrotalcite on adsorption of Cr (VI) from aqueous solution. J Hazard Mater 186:690–698

    Article  CAS  Google Scholar 

  32. Alvarez-Ayuso E, Nugteren H (2005) Purification of chromium (VI) finishing wastewaters using calcined and uncalcined Mg-Al-CO3-hydrotalcite. Water Res 39:2535–2542

    Article  CAS  Google Scholar 

  33. Ferreira OP, De Moraes SG, Durán N, Cornejo L, Alves OL (2006) Evaluation of boron removal from water by hydrotalcite-like compounds. Chemosphere 62:80–88

    Article  CAS  Google Scholar 

  34. Chen Y, Song Y (2013) Highly selective and efficient removal of Cr (VI) and Cu (II) by the chromotropic acid-intercalated Zn–Al layered double hydroxides. Ind Eng Chem Res 52:4436–4442

    Article  CAS  Google Scholar 

  35. Goswamee RL, Sengupta P, Bhattacharyya KG, Dutta DK (1998) Adsorption of Cr(VI) in layered double hydroxides. Appl Clay Sci 13:21–34

    Article  CAS  Google Scholar 

  36. Lützenkirchen J, Ch. 11 in J. Tóth (Ed.), Adsorption: Theory, Modeling, and Analysis, Dekker. New York. 2002

  37. Kosmulski M (2001) Chemical properties of material surfaces. Marcel Dekker, Inc., New York

    Book  Google Scholar 

  38. Hou W, Song S (2004) Intrinsic surface reaction equilibrium constants of structurally charged amphoteric hydrotalcite-like compounds. J Colloid Interface Sci 269:381–387

    Article  CAS  Google Scholar 

  39. Hou W, Han S, Li D, Zhang G (2004) Intrinsic surface reaction constant in 1-pK model of Mg-Fe hydrotalcite-like compounds. Chin J Chem 22:268–270

    Article  CAS  Google Scholar 

  40. Hou W, Ren C (2006) Evaluation of intrinsic ionization and complexation constants of TiO2 and Mg-Fe hydrotalcite-like compounds. Chin J Chem 24:1336–1341

    Article  CAS  Google Scholar 

  41. Li Y, Gao B, Wu T, Sun D, Li X, Wang B, Lu F (2009) Hexavalent chromium removal from aqueous solution by adsorption on aluminum magnesium mixed hydroxide. Water Res 43:3067–3075

    Article  CAS  Google Scholar 

  42. Wang J, Pan K, He Q, Cao B (2013) Polyacrylonitrile/polypyrrole core/shell nanofiber mat for the removal of hexavalent chromium from aqueous solution. J Hazard Mater 244–245:121–129

    Article  Google Scholar 

  43. Chiou MS, Li HY (2003) Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere 50:1095–1105

    Article  CAS  Google Scholar 

  44. Zhao D, SenGupta AK, Stewart L (1998) Selective removal of Cr(VI) oxyanions with a new anion exchanger. Ind. Eng Chem Res 37:4383–4387

Download references

Acknowledgments

This work was supported financially by the National Natural Science Foundation of China (No. 21173135 and 21403128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanguo Hou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2357 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Du, N., Li, H. et al. Sorbent effect on the sorption of Cr(VI) on a Mg6AlFe-layered double hydroxide and its calcined product in aqueous solutions. Colloid Polym Sci 293, 1961–1969 (2015). https://doi.org/10.1007/s00396-015-3592-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3592-x

Keywords

Navigation