Skip to main content
Log in

A sorbent concentration-dependent Freundlich isotherm

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

During study of the adsorption isotherms at solid–liquid interfaces, a sorbent concentration effect (C s-effect) phenomenon was observed. In order to describe the C s-effect, we proposed a new adsorption model, i.e., surface component activity (SCA) model. It supposes that the interaction between the sorbent particles exists in the real adsorption system, which induces the deviation of a real adsorption system from an ideal one. It is the deviation that induces the emerging of the C s-effect. Based on the SCA model, the activity coefficient of adsorption sites should be a function of the sorbent concentration (C s), and a C s-dependent Freundlich equation (Freundlich-SCA equation) was derived. It was confirmed that the Freundlich-SCA equation can describe the C s-effect observed in adsorption experiments. Its parameters (n S and K S) can be simulated with experimental adsorption data and are independent of C s. Thus, these parameters obtained at given C s values can be used to predict the adsorption behavior of the adsorbate at any C s value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O’Connor DJ, Connolly JP (1980) The effect of concentration of adsorbing solids on the partition coefficient. Water Res 14:1517–1523

    Article  Google Scholar 

  2. Voice TC, Rice CP, Weber WJ Jr (1983) Effect of solids concentration on the sorptive partitioning of hydrophobic pollutants in aquatic systems. Environ Sci Technol 17:513–518

    Article  CAS  Google Scholar 

  3. Voice TC, Weber WJ Jr (1985) Sorbent concentration effects in liquid/solid partitioning. Environ Sci Technol 19:789–796

    Article  CAS  Google Scholar 

  4. Pan G, Liss PS (1998) Metastable-equilibrium adsorption theory I. Theoretical. J Colloid Interface Sci 201:71–76

    Article  CAS  Google Scholar 

  5. Cohen-Stuart MA, Scheutjens J, Fleer G (1980) Polydispersity effects and the interpretation of polymer adsorption isotherms. J Polym Sci Polym Phys Ed 18:559–573

    Article  CAS  Google Scholar 

  6. Nyffeler UP, Li YH, Santschi PH (1984) A kinetic approach to describe trace-element distribution between particles and solution in natural aquatic systems. Geochim Cosmochim Acta 48:1513–1522

    Article  CAS  Google Scholar 

  7. Gschwend PM, Wu S (1985) On the constancy of sediment-water partition coefficients of hydrophobic organic pollutants. Environ Sci Technol 19:90–96

    Article  CAS  Google Scholar 

  8. Di Toro DM, Mahony JD, Kirchgraber PR, O’Byrne AL, Pasquale LR, Piccirilli DC (1986) Effects of nonreversibility, particle concentration, and ionic strength on heavy-metal sorption. Environ Sci Technol 20:55–61

    Article  Google Scholar 

  9. McKinley JP, Jenne EA (1991) Experimental investigation and review of the “solids concentration” effect in adsorption studies. Environ Sci Technol 25:2082–2087

    Article  CAS  Google Scholar 

  10. Grolimund D, Borkovec M, Federer P, Sticher H (1995) Measurement of sorption isotherms with flow-through reactors. Environ Sci Technol 29:2317–2321

    Article  CAS  Google Scholar 

  11. Pan G, Liss PS, Krom MD (1999) Particle concentration effect and adsorption reversibility. Colloids Surf A 151:127–133

    Article  CAS  Google Scholar 

  12. Helmy A, Ferreiro E, De Bussetti S (2000) Effect of particle association on 2, 2′-bipyridyl adsorption onto kaolinite. J Colloid Interface Sci 225:398–402

    Article  CAS  Google Scholar 

  13. Chang T, Wang M (2002) Assessment of sorbent/water ratio effect on adsorption using dimensional analysis and batch experiments. Chemosphere 48:419–426

    Article  CAS  Google Scholar 

  14. Wu XF, Hu YL, Zhao F, Huang ZZ, Lei D (2006) Ion adsorption components in liquid/solid systems. J Environ Sci 18:1167–1175

    Article  CAS  Google Scholar 

  15. Lu HJ, Luan MT, Zhang JL, Yu YX (2008) Study on the adsorption of Cr(VI) onto landfill liners containing granular activated carbon or bentonite activated by acid. J China Univ Min Technol 18:125–130

    Article  CAS  Google Scholar 

  16. Utomo HD, Hunter KA (2010) Particle concentration effect: adsorption of divalent metal ions on coffee grounds. Bioresour Technol 101:1482–1486

    Article  Google Scholar 

  17. Mura-Galelli MJ, Voegel JC, Behr S, Bres EF, Schaaf P (1991) Adsorption/desorption of human serum albumin on hydroxyapatite: a critical analysis of the Langmuir model. Proc Natl Acad Sci (USA Biochem) 88:5557–5561

    Article  CAS  Google Scholar 

  18. Zhao LX, Hou WG (2012) The effect of sorbent concentration on the partition coefficient of pollutants between aqueous and particulate phases. Colloids Surf A 396:29–34

    Article  CAS  Google Scholar 

  19. Iraolagoitia XL, Martini MF (2010) Ca2+ adsorption to lipid membranes and the effect of cholesterol in their composition. Colloids Surf B 76:215–220

    Article  CAS  Google Scholar 

  20. Sheindorf CH, Rebhun M, Sheintuch M (1981) A Freundlich-type multicomponent isotherm. J Colloid Interface Sci 79:136–142

    Article  CAS  Google Scholar 

  21. Santhi T, Manonmani S, Smitha T (2010) Kinetics and isotherm studies on cationic dyes adsorption onto Annona squamosa seed activated carbon. Int J Eng Sci Technol 2:287–295

    Google Scholar 

  22. Pan G, Liss PS (1998) Metastable-equilibrium adsorption theory II. Experimental. J Colloid Interface Sci 201:77–85

    Article  CAS  Google Scholar 

  23. Yang YH, Chen H, Pan G (2007) Particle concentration effect in adsorption/desorption of Zn(II) on anatase type nano TiO2. J Environ Sci 19:1442–1445

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21173135), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20110131130008), the Taishan Scholar Foundation of Shandong Province of China (No. ts20070713), and the Graduate Independent Innovation Foundation of Shandong University (No. yzc10112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Guo Hou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1335 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, LX., Song, SE., Du, N. et al. A sorbent concentration-dependent Freundlich isotherm. Colloid Polym Sci 291, 541–550 (2013). https://doi.org/10.1007/s00396-012-2742-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2742-7

Keywords

Navigation